Reputation: 6357
minAreaRect
in OpenCV returns a rotated rectangle. How do I crop this part of the image which is inside the rectangle?
boxPoints
returns the co-ordinates of the corner points of the rotated rectangle so one can access the pixels by looping through the points inside the box, but is there a faster way to crop in Python?
EDIT
See code
in my answer below.
Upvotes: 21
Views: 55550
Reputation: 11
So, I found a bug in the answers provided to this issue (especially the top answer by @OliverWilken). I think it could seriously affect a number of algorithms based on this thread. Here is the case on which I found the bug, although I think it occurs systematically:
A text segment with its minAreaRect drawn in red
When using @OliverWilken's suggested function, we get the following:
The cropped image does not overlap with the rect, as expected
The drift is likely due to rounding errors, and the incorrect use of transforms. The fix is the following:
def crop_minAreaRect(img, rect):
box = cv2.boxPoints(rect)
box = np.int0(box)
width, height = int(rect[1][0]), int(rect[1][1])
src_pts = box.astype('float32')
dst_pts = np.array([[0, height-1], [0, 0], [width-1, 0], [width-1, height-1]], dtype='float32')
M = cv2.getPerspectiveTransform(src_pts, dst_pts)
img_crop = cv2.warpPerspective(img, M, (width, height))
return img_crop
And here is the outcome: Correctly cropped text segment
Upvotes: 1
Reputation: 1291
Unfortunately, the answer of Oliver Wilken didn't result in the images shown. Maybe because of a different openCV version? Here my adopted version which adds several features:
import cv2
import numpy as np
def img_rectangle_cut(img, rect=None, angle=None):
"""Translate an image, defined by a rectangle. The image is cropped to the size of the rectangle
and the cropped image can be rotated.
The rect must be of the from (tuple(center_xy), tuple(width_xy), angle).
The angle are in degrees.
PARAMETER
---------
img: ndarray
rect: tuple, optional
define the region of interest. If None, it takes the whole picture
angle: float, optional
angle of the output image in respect to the rectangle.
I.e. angle=0 will return an image where the rectangle is parallel to the image array axes
If None, no rotation is applied.
RETURNS
-------
img_return: ndarray
rect_return: tuple
the rectangle in the returned image
t_matrix: ndarray
the translation matrix
"""
if rect is None:
if angle is None:
angle = 0
rect = (tuple(np.array(img.shape) * .5), img.shape, 0)
box = cv2.boxPoints(rect)
rect_target = rect_rotate(rect, angle=angle)
pts_target = cv2.boxPoints(rect_target)
# get max dimensions
size_target = np.int0(np.ceil(np.max(pts_target, axis=0) - np.min(pts_target, axis=0)))
# translation matrix
t_matrix = cv2.getAffineTransform(box[:3].astype(np.float32),
pts_target[:3].astype(np.float32))
# cv2 needs the image transposed
img_target = cv2.warpAffine(cv2.transpose(img), t_matrix, tuple(size_target))
# undo transpose
img_target = cv2.transpose(img_target)
return img_target, rect_target, t_matrix
def reshape_cv(x, axis=-1):
"""openCV and numpy have a different array indexing (row, cols) vs (cols, rows), compensate it here."""
if axis < 0:
axis = len(x.shape) + axis
return np.array(x).astype(np.float32)[(*[slice(None)] * axis, slice(None, None, -1))]
def connect(x):
"""Connect data for a polar or closed loop plot, i.e. np.append(x, [x[0]], axis=0)."""
if isinstance(x, np.ma.MaskedArray):
return np.ma.append(x, [x[0]], axis=0)
else:
return np.append(x, [x[0]], axis=0)
def transform_np(x, t_matrix):
"""Apply a transform on a openCV indexed array and return a numpy indexed array."""
return transform_cv2np(reshape_cv(x), t_matrix)
def transform_cv2np(x, t_matrix):
"""Apply a transform on a numpy indexed array and return a numpy indexed array."""
return reshape_cv(cv2.transform(np.array([x]).astype(np.float32), t_matrix)[0])
def rect_scale_pad(rect, scale=1., pad=40.):
"""Scale and/or pad a rectangle."""
return (rect[0],
tuple((np.array(rect[1]) + pad) * scale),
rect[2])
def rect_rotate(rect, angle=None):
"""Rotate a rectangle by an angle in respect to it's center.
The rect must be of the from (tuple(center_xy), tuple(width_xy), angle).
The angle is in degrees.
"""
if angle is None:
angle = rect[2]
rad = np.deg2rad(np.abs(angle))
rot_matrix_2d = np.array([[np.cos(rad), np.sin(rad)],
[np.sin(rad), np.cos(rad)]])
# cal. center of rectangle
center = np.sum(np.array(rect[1]).reshape(1, -1) * rot_matrix_2d, axis=-1) * .5
center = np.abs(center)
return tuple(center), rect[1], angle
# Generate Image
img = np.zeros((1200, 660), dtype=np.uint8)
# Draw some lines and gen. points
x_0 = np.array([150,600])
x_1 = np.int0(x_0 + np.array((100, 100)))
x_2 = np.int0(x_0 + np.array((100, -100))*2.5)
img = cv2.line(img,tuple(x_0),tuple(x_1),1,120)
img = cv2.line(img,tuple(x_0),tuple(x_2),1,120)
points = np.array([x_0, x_1, x_2])
# Get Box
rect = cv2.minAreaRect(np.argwhere(img))
# Apply transformation
rect_scale = rect_scale_pad(rect, scale = 1., pad = 40.)
img_return, rect_target, t_matrix = img_rectangle_cut(
img,
rect_scale,
angle=0,
angle_normalize=True # True <-> angel=0 vertical; angel=90 horizontal
)
# PLOT
fig, ax = plt.subplots(ncols=2, figsize=(10,5))
ax = ax.flatten()
ax[0].imshow(img)
box_i = reshape_cv(cv2.boxPoints(rect))
ax[0].plot(*connect(box_i).T, 'o-', color='gray', alpha=.75, label='Original Box')
box_i = reshape_cv(cv2.boxPoints(rect_scale))
ax[0].plot(*connect(box_i).T, 'o-', color='green', alpha=.75, label='Scaled Box')
ax[0].plot(*points.T, 'o', label='Points')
ax[1].imshow(img_return)
box_i = transform_cv2np(cv2.boxPoints(rect), t_matrix)
ax[1].plot(*connect(box_i).T, 'o-', color='gray', alpha=.75, label='Original Box')
point_t = transform_np(points, t_matrix)
ax[1].plot(*point_t.T, 'o', label='Points')
ax[0].set_title('Original')
ax[1].set_title('Translated')
for axi in ax:
axi.legend(loc=1)
plt.tight_layout()
Upvotes: 2
Reputation: 2714
here a function that does this task:
import cv2
import numpy as np
def crop_minAreaRect(img, rect):
# rotate img
angle = rect[2]
rows,cols = img.shape[0], img.shape[1]
M = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
img_rot = cv2.warpAffine(img,M,(cols,rows))
# rotate bounding box
rect0 = (rect[0], rect[1], 0.0)
box = cv2.boxPoints(rect0)
pts = np.int0(cv2.transform(np.array([box]), M))[0]
pts[pts < 0] = 0
# crop
img_crop = img_rot[pts[1][1]:pts[0][1],
pts[1][0]:pts[2][0]]
return img_crop
here an example usage
# generate image
img = np.zeros((1000, 1000), dtype=np.uint8)
img = cv2.line(img,(400,400),(511,511),1,120)
img = cv2.line(img,(300,300),(700,500),1,120)
# find contours / rectangle
_,contours,_ = cv2.findContours(img, 1, 1)
rect = cv2.minAreaRect(contours[0])
# crop
img_croped = crop_minAreaRect(img, rect)
# show
import matplotlib.pylab as plt
plt.figure()
plt.subplot(1,2,1)
plt.imshow(img)
plt.subplot(1,2,2)
plt.imshow(img_croped)
plt.show()
this is the output
Upvotes: 37
Reputation: 926
@AbdulFatir was on to a good solution but as the comments stated(@Randika @epinal) it wasn't quite working for me either so I modified it slightly and it seems to be working for my case. here is the image I am using.
im, contours, hierarchy = cv2.findContours(open_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
print("num of contours: {}".format(len(contours)))
mult = 1.2 # I wanted to show an area slightly larger than my min rectangle set this to one if you don't
img_box = cv2.cvtColor(img.copy(), cv2.COLOR_GRAY2BGR)
for cnt in contours:
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
cv2.drawContours(img_box, [box], 0, (0,255,0), 2) # this was mostly for debugging you may omit
W = rect[1][0]
H = rect[1][1]
Xs = [i[0] for i in box]
Ys = [i[1] for i in box]
x1 = min(Xs)
x2 = max(Xs)
y1 = min(Ys)
y2 = max(Ys)
rotated = False
angle = rect[2]
if angle < -45:
angle+=90
rotated = True
center = (int((x1+x2)/2), int((y1+y2)/2))
size = (int(mult*(x2-x1)),int(mult*(y2-y1)))
cv2.circle(img_box, center, 10, (0,255,0), -1) #again this was mostly for debugging purposes
M = cv2.getRotationMatrix2D((size[0]/2, size[1]/2), angle, 1.0)
cropped = cv2.getRectSubPix(img_box, size, center)
cropped = cv2.warpAffine(cropped, M, size)
croppedW = W if not rotated else H
croppedH = H if not rotated else W
croppedRotated = cv2.getRectSubPix(cropped, (int(croppedW*mult), int(croppedH*mult)), (size[0]/2, size[1]/2))
plt.imshow(croppedRotated)
plt.show()
plt.imshow(img_box)
plt.show()
This should produce a series of images like these:
And it will also give a result image like this:
Upvotes: 15
Reputation: 6357
Here's the code to perform the above task. To speed up the process, instead of first rotating the entire image and cropping, part of the image which has the rotated rectangle is first cropped, then rotated, and cropped again to give the final result.
# Let cnt be the contour and img be the input
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
W = rect[1][0]
H = rect[1][1]
Xs = [i[0] for i in box]
Ys = [i[1] for i in box]
x1 = min(Xs)
x2 = max(Xs)
y1 = min(Ys)
y2 = max(Ys)
angle = rect[2]
if angle < -45:
angle += 90
# Center of rectangle in source image
center = ((x1+x2)/2,(y1+y2)/2)
# Size of the upright rectangle bounding the rotated rectangle
size = (x2-x1, y2-y1)
M = cv2.getRotationMatrix2D((size[0]/2, size[1]/2), angle, 1.0)
# Cropped upright rectangle
cropped = cv2.getRectSubPix(img, size, center)
cropped = cv2.warpAffine(cropped, M, size)
croppedW = H if H > W else W
croppedH = H if H < W else W
# Final cropped & rotated rectangle
croppedRotated = cv2.getRectSubPix(cropped, (int(croppedW),int(croppedH)), (size[0]/2, size[1]/2))
Upvotes: 14
Reputation: 6259
You have not given sample code, so I am answering without code also. You could proceed as follows:
Upvotes: 2