Reputation: 1061
I am trying to convert the normal date-time to unix time stamp in pandas. while looking for some samples around I could only find one example here but I am not able to use in my context. The data set has no headers and the last 2 columns
need to convert UNIX time stamp
and generate a new output along with first 3 columns.
1466f7b93975983f6e292a8a4faaa4b2,1619b4d0d283c0dddb17d24a359a3b49,36db348cde68592a31d502366fc52932,2010-03-08 17:09:00.472544,2010-03-12 16:09:58.122987
367c13356a5d22158f0ae56977134e2c,eedb7d0714796b64767a8710ea3844a7,925476200929fd346ea312cbe9a046fe,2010-03-08 17:08:29.174236,2010-03-12 16:09:58.122987
edf6b1e4f67b0e8a5080d299c9f9aeb2,7cb7681b90388a7522d0f06578591567,ffde0649a72ded8e33522c503a4d5cbe,2010-03-08 17:08:22.030524,2010-03-12 16:09:58.122987
6bb2ad8bc78897e99072d4d76cf0f19c,b644947ac4db03bdb518cfa71765f8c8,eb25089d396c06255cbb5f1bad801cc4,2010-03-08 17:07:55.819137,2010-03-12 16:09:58.122987
The input file has like millions of rows only few I have posted here. Any suggestion will be valuable. Thank in advance
Upvotes: 1
Views: 3031
Reputation: 862691
You can first read_csv
and then convert last two columns to np.int64
by astype
divided by 10**9
. For writing to file use to_csv
:
import pandas as pd
import numpy as np
import io
temp=u"""1466f7b93975983f6e292a8a4faaa4b2,1619b4d0d283c0dddb17d24a359a3b49,36db348cde68592a31d502366fc52932,2010-03-08 17:09:00.472544,2010-03-12 16:09:58.122987
367c13356a5d22158f0ae56977134e2c,eedb7d0714796b64767a8710ea3844a7,925476200929fd346ea312cbe9a046fe,2010-03-08 17:08:29.174236,2010-03-12 16:09:58.122987
edf6b1e4f67b0e8a5080d299c9f9aeb2,7cb7681b90388a7522d0f06578591567,ffde0649a72ded8e33522c503a4d5cbe,2010-03-08 17:08:22.030524,2010-03-12 16:09:58.122987
6bb2ad8bc78897e99072d4d76cf0f19c,b644947ac4db03bdb518cfa71765f8c8,eb25089d396c06255cbb5f1bad801cc4,2010-03-08 17:07:55.819137,2010-03-12 16:09:58.122987"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp),
header=None, #no header in csv
names=['a','b','c','d', 'e'], #set custom column names
parse_dates=['d','e']) #parse columns d, e to datetime
print df
a b \
0 1466f7b93975983f6e292a8a4faaa4b2 1619b4d0d283c0dddb17d24a359a3b49
1 367c13356a5d22158f0ae56977134e2c eedb7d0714796b64767a8710ea3844a7
2 edf6b1e4f67b0e8a5080d299c9f9aeb2 7cb7681b90388a7522d0f06578591567
3 6bb2ad8bc78897e99072d4d76cf0f19c b644947ac4db03bdb518cfa71765f8c8
c d \
0 36db348cde68592a31d502366fc52932 2010-03-08 17:09:00.472544
1 925476200929fd346ea312cbe9a046fe 2010-03-08 17:08:29.174236
2 ffde0649a72ded8e33522c503a4d5cbe 2010-03-08 17:08:22.030524
3 eb25089d396c06255cbb5f1bad801cc4 2010-03-08 17:07:55.819137
e
0 2010-03-12 16:09:58.122987
1 2010-03-12 16:09:58.122987
2 2010-03-12 16:09:58.122987
3 2010-03-12 16:09:58.122987
df['d'] = df['d'].astype(np.int64) // 10**9
df['e'] = df['e'].astype(np.int64) // 10**9
print df
a b \
0 1466f7b93975983f6e292a8a4faaa4b2 1619b4d0d283c0dddb17d24a359a3b49
1 367c13356a5d22158f0ae56977134e2c eedb7d0714796b64767a8710ea3844a7
2 edf6b1e4f67b0e8a5080d299c9f9aeb2 7cb7681b90388a7522d0f06578591567
3 6bb2ad8bc78897e99072d4d76cf0f19c b644947ac4db03bdb518cfa71765f8c8
c d e
0 36db348cde68592a31d502366fc52932 1268068140 1268410198
1 925476200929fd346ea312cbe9a046fe 1268068109 1268410198
2 ffde0649a72ded8e33522c503a4d5cbe 1268068102 1268410198
3 eb25089d396c06255cbb5f1bad801cc4 1268068075 1268410198
df.to_csv('filename', header=None, index=False)
Upvotes: 3
Reputation: 294278
Unix date time is just the number of seconds since January 1, 1970.
So to ensure conversion from the correct date:
def dt2ut(dt):
epoch = pd.to_datetime('1970-01-01')
return (dt - epoch).total_seconds()
Then
import pandas as pd
import numpy as np
import io
temp=u"""1466f7b93975983f6e292a8a4faaa4b2,1619b4d0d283c0dddb17d24a359a3b49,36db348cde68592a31d502366fc52932,2010-03-08 17:09:00.472544,2010-03-12 16:09:58.122987
367c13356a5d22158f0ae56977134e2c,eedb7d0714796b64767a8710ea3844a7,925476200929fd346ea312cbe9a046fe,2010-03-08 17:08:29.174236,2010-03-12 16:09:58.122987
edf6b1e4f67b0e8a5080d299c9f9aeb2,7cb7681b90388a7522d0f06578591567,ffde0649a72ded8e33522c503a4d5cbe,2010-03-08 17:08:22.030524,2010-03-12 16:09:58.122987
6bb2ad8bc78897e99072d4d76cf0f19c,b644947ac4db03bdb518cfa71765f8c8,eb25089d396c06255cbb5f1bad801cc4,2010-03-08 17:07:55.819137,2010-03-12 16:09:58.122987"""
#after testing replace io.StringIO(temp) to filename
df = pd.read_csv(io.StringIO(temp), header=None, names=['a','b','c','d', 'e'])
df['d'] = df['d'].apply(dt2ut).astype(np.int64)
df['e'] = df['e'].apply(dt2ut).astype(np.int64)
Upvotes: 1