Reputation: 4574
I spend some time implementing a quicksort algorithm in C#. After finishing I compared the speed of my implementation and C#'s Array.Sort-Method.
I just compare speed working on random int arrays.
Here's my implementation:
static void QuickSort(int[] data, int left, int right)
{
int i = left - 1,
j = right;
while (true)
{
int d = data[left];
do i++; while (data[i] < d);
do j--; while (data[j] > d);
if (i < j)
{
int tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
else
{
if (left < j) QuickSort(data, left, j);
if (++j < right) QuickSort(data, j, right);
return;
}
}
}
Performance (when sorting an random int[] with length of 100000000):
- my algorithm: 14.21 seconds
- .Net Array<int>.Sort: 14.84 seconds
Does anyone know how to implement my algorithm even faster?
Or can anyone provide a faster implementation (need not be a quicksort!) which my run faster?
Note:
- please no algorithms which use multiple cores/processors to improve perrformance
- only valid C# source code
I will test the performance of the provided algorithms within a few minutes if I'm online.
EDIT:
Do you think using a ideal sorting network for parts containing less than 8 value would improve performance?
Upvotes: 6
Views: 21593
Reputation: 167891
Binary insertion sort almost always wins for short runs (~10 items). It's often better than an ideal sorting network because of the simplified branching structure.
Dual pivot quicksort is faster than quicksort.
If you're only sorting integers, a radix sort will likely be faster still on long arrays.
Upvotes: 8
Reputation: 3383
This is faster and simpler for me.
unsafe static void Sort(int* a, int length)
{
int negLength = length - 1;
for (int i = 0; i < negLength; ++i)
for (int n = i + 1; n < length; ++n)
{
int value = a[i];
int next = a[n];
if (value > next)
{
a[i] = next;
a[n] = value;
}
}
}
Upvotes: 1
Reputation: 470
A faster sorting algorithm for arrays of random integers is LSD Radix Sort:
public static int[] SortRadix(this int[] inputArray)
{
const int bitsPerDigit = 8;
const uint numberOfBins = 1 << bitsPerDigit;
uint numberOfDigits = (sizeof(uint) * 8 + bitsPerDigit - 1) / bitsPerDigit;
int d;
var outputArray = new int[inputArray.Length];
int[][] startOfBin = new int[numberOfDigits][];
for (int i = 0; i < numberOfDigits; i++)
startOfBin[i] = new int[numberOfBins];
bool outputArrayHasResult = false;
const uint bitMask = numberOfBins - 1;
const uint halfOfPowerOfTwoRadix = PowerOfTwoRadix / 2;
int shiftRightAmount = 0;
uint[][] count = HistogramByteComponents(inputArray, 0, inputArray.Length - 1);
for (d = 0; d < numberOfDigits; d++)
{
startOfBin[d][0] = 0;
for (uint i = 1; i < numberOfBins; i++)
startOfBin[d][i] = startOfBin[d][i - 1] + (int)count[d][i - 1];
}
d = 0;
while (d < numberOfDigits)
{
int[] startOfBinLoc = startOfBin[d];
if (d != 3)
for (uint current = 0; current < inputArray.Length; current++)
outputArray[startOfBinLoc[((uint)inputArray[current] >> shiftRightAmount) & bitMask]++] = inputArray[current];
else
for (uint current = 0; current < inputArray.Length; current++)
outputArray[startOfBinLoc[((uint)inputArray[current] >> shiftRightAmount) ^ halfOfPowerOfTwoRadix]++] = inputArray[current];
shiftRightAmount += bitsPerDigit;
outputArrayHasResult = !outputArrayHasResult;
d++;
int[] tmp = inputArray; // swap input and output arrays
inputArray = outputArray;
outputArray = tmp;
}
return outputArrayHasResult ? outputArray : inputArray;
}
[StructLayout(LayoutKind.Explicit)]
internal struct Int32ByteUnion
{
[FieldOffset(0)]
public byte byte0;
[FieldOffset(1)]
public byte byte1;
[FieldOffset(2)]
public byte byte2;
[FieldOffset(3)]
public byte byte3;
[FieldOffset(0)]
public Int32 integer;
}
public static uint[][] HistogramByteComponents(int[] inArray, Int32 l, Int32 r)
{
const int numberOfBins = 256;
const int numberOfDigits = sizeof(ulong);
uint[][] count = new uint[numberOfDigits][];
for (int i = 0; i < numberOfDigits; i++)
count[i] = new uint[numberOfBins];
var union = new Int32ByteUnion();
for (int current = l; current <= r; current++) // Scan the array and count the number of times each digit value appears - i.e. size of each bin
{
union.integer = inArray[current];
count[0][union.byte0]++;
count[1][union.byte1]++;
count[2][union.byte2]++;
count[3][((uint)inArray[current] >> 24) ^ 128]++;
}
return count;
}
It runs at nearly 100 MegaInt32s/sec on a single core - about 7X faster than Array.Sort(), 25X faster than Linq.OrderBy() on a single core and 6X faster than Linq.AsParallel().OrderBy() on 6 cores.
This implementation is taken from the HPCsharp nuget package on nuget.org, which also has versions for sorting arrays of uint[], long[], and ulong[], as well as MSD Radix Sort, which adds float[] and double[] arrays and is in-place.
Upvotes: 1
Reputation: 5154
This first(and probably the second one) quick sort algorithm breaks when sorting arrays with duplicate items. I used this one, which works fine.
Upvotes: 0
Reputation: 8531
Take a look at Shear Sort and Odd-Event Transposition sort: http://www.cs.rit.edu/~atk/Java/Sorting/sorting.html and http://home.westman.wave.ca/~rhenry/sort/.
There's a C# implementation of Shear Sort here: http://www.codeproject.com/KB/recipes/cssorters.aspx.
The examples are in Java but that's awfully close to C#. They're parallel sorts because they run faster on multiple cores but still should be very fast.
Upvotes: 0
Reputation: 48949
Does anyone know how to implement my algorithm even faster?
I was able to shave 10% off the execution time by converting your code to use pointers.
public unsafe static void UnsafeQuickSort(int[] data)
{
fixed (int* pdata = data)
{
UnsafeQuickSortRecursive(pdata, 0, data.Length - 1);
}
}
private unsafe static void UnsafeQuickSortRecursive(int* data, int left, int right)
{
int i = left - 1;
int j = right;
while (true)
{
int d = data[left];
do i++; while (data[i] < d);
do j--; while (data[j] > d);
if (i < j)
{
int tmp = data[i];
data[i] = data[j];
data[j] = tmp;
}
else
{
if (left < j) UnsafeQuickSortRecursive(data, left, j);
if (++j < right) UnsafeQuickSortRecursive(data, j, right);
return;
}
}
}
Upvotes: 7