Reputation: 107
I have a very strange problem. To keep things simple, lets say I want to have a function which takes 2 functions with the same declaration as arguments
template<typename Func>
void foo(Func a, Func b)
{
std::cout << "good";
}
To try things out I took putchar
from cstdio, and created an identical function to match the putchar
.
int myPutcharFunc(int)
{
return 0;
}
int main()
{
auto myPutcharLambda = [](int) -> int
{
return 0;
};
foo(putchar, myPutcharFunc); // okay
foo(putchar, myPutcharLambda); //deduced conflicting types for parameter 'Func' ('int (__attribute__((__cdecl__)) *)(int)' and 'main()::<lambda(int)>')
}
Now, the lambda does not want to compile (the key is I want to use lambda capture).
So lets add template specialization, because the programmer is wiser than the machine, right? :)
template<typename Func>
void foo(Func a, Func b)
{
std::cout << "good";
}
template<>
void foo(int(*)(int), int(*)(int))
{
std::cout << "good";
}
No luck, the same error - why? But for some reason, when I comment out the template specialization:
//template<>
void foo(int(*)(int), int(*)(int))
{
std::cout << "good";
}
The code compiles. I obviously do not want to overload foo
for EVERY set of function's arguments - thats what templates are for. Every step was tested both with msvc++ and g++. What am I doing wrong?
Upvotes: 4
Views: 305
Reputation: 19781
Every lambda is a different type, so you'll need to have two different template parameters to get them
template<typename FuncA, typename FuncB>
void foo(FuncA a, FuncB b)
Types don't decay when deducing template types (SEE COMMENT FOR CORRECTION). So a lambda remains a lambda and doesn't decay to a function pointer. Same reason a string literal is deduced as a char[N]
instead of a const char *
.
With your second example using specialization, it doesn't want to use your specialization, since the lambda is not a function pointer. You can cast the Lambda to a function pointer and make it work: https://godbolt.org/g/ISgPci The trick you can do here is say +my_lambda because + is defined for pointers so it will force the non-capturing lambda to become a function pointer.
Upvotes: 2
Reputation: 4429
A lambda has its own type which can decay to a function pointer but not in the case of a template function match, it will for the real function as you found because of the implicit conversion.
In the case of matching to a template you need to disambiguate and explicitly instantiate foo with the type you want or convert the lambda to a function pointer.
foo<decltype(putchar)>(putchar, myPutcharLambda);
or
foo(putchar, +myPutcharLambda);
Upvotes: 1
Reputation: 27183
Two possibilities.
1: Just put +
in front of the lambda:
foo(putchar, +myPutcharLambda);
That works because unary +
expects an integer-like value, such as a pointer. Therefore, the lambda converts to a function pointer.
Ultimately a (non-capturing) lambda doesn't have the same type as a function pointer, even though it's willing to convert to a function pointer.
How is a compiler supposed to know which conversions are allowed to make two objects of the same type?
2: There is another option, making use of the fact that the ?:
is willing to do some conversions, converting one type to another in some circumstances.
template<typename Func1, typename Func2>
void foo2(Func1 a, Func2 b)
{
using common_type = decltype(true?a:b); // or 'false', it doesn't matter
foo<common_type>(a,b);
}
Upvotes: 2