Reputation: 1293
I have a data.frame that has several variables with zero values. I need to construct an extra variable that would return the combination of variables that are not zero for each observation. E.g.
df <- data.frame(firm = c("firm1", "firm2", "firm3", "firm4", "firm5"),
A = c(0, 0, 0, 1, 2),
B = c(0, 1, 0, 42, 0),
C = c(1, 1, 0, 0, 0))
Now I would like to generate the new variable:
df$varCombination <- c("C", "B-C", NA, "A-B", "A")
I thought up something like this, which obviously did not work:
for (i in 1:nrow(df)){
df$varCombination[i] <- paste(names(df[i,2:ncol(df) & > 0]), collapse = "-")
}
Upvotes: 3
Views: 119
Reputation: 92282
This could be probably solved easily using apply(df, 1, fun)
, but here is an attempt to solve this column wise instead of row wise for performance sake (I once saw something similar done by @alexis_laz but can't find it right now)
## Create a logical matrix
tmp <- df[-1] != 0
## or tmp <- sapply(df[-1], `!=`, 0)
## Prealocate result
res <- rep(NA, nrow(tmp))
## Run per column instead of per row
for(j in colnames(tmp)){
res[tmp[, j]] <- paste(res[tmp[, j]], j, sep = "-")
}
## Remove the pre-allocated `NA` values from non-NA entries
gsub("NA-", "", res, fixed = TRUE)
# [1] "C" "B-C" NA "A-B" "A"
Some benchmarks on a bigger data set
set.seed(123)
BigDF <- as.data.frame(matrix(sample(0:1, 1e4, replace = TRUE), ncol = 10))
library(microbenchmark)
MM <- function(df) {
var_names <- names(df)[-1]
res <- character(nrow(df))
for (i in 1:nrow(df)){
non_zero_names <- var_names[df[i, -1] > 0]
res[i] <- paste(non_zero_names, collapse = '-')
}
res
}
ZX <- function(df) {
res <-
apply(df[,2:ncol(df)]>0, 1,
function(i)paste(colnames(df[, 2:ncol(df)])[i], collapse = "-"))
res[res == ""] <- NA
res
}
DA <- function(df) {
tmp <- df[-1] != 0
res <- rep(NA, nrow(tmp))
for(j in colnames(tmp)){
res[tmp[, j]] <- paste(res[tmp[, j]], j, sep = "-")
}
gsub("NA-", "", res, fixed = TRUE)
}
microbenchmark(MM(BigDF), ZX(BigDF), DA(BigDF))
# Unit: milliseconds
# expr min lq mean median uq max neval cld
# MM(BigDF) 239.36704 248.737408 253.159460 252.177439 255.144048 289.340528 100 c
# ZX(BigDF) 35.83482 37.617473 38.295425 38.022897 38.357285 76.619853 100 b
# DA(BigDF) 1.62682 1.662979 1.734723 1.735296 1.761695 2.725659 100 a
Upvotes: 6
Reputation: 1981
You had the right idea but the logical comparison in your loop wasn't correct.
I've attempted to keep the code fairly similar to what you had before, this should work:
var_names <- names(df)[-1]
df$varCombination <- character(nrow(df))
for (i in 1:nrow(df)){
non_zero_names <- var_names[df[i, -1] > 0]
df$varCombination[i] <- paste(non_zero_names, collapse = '-')
}
> df
firm A B C varCombination
1 firm1 0 0 1 C
2 firm2 0 1 1 B-C
3 firm3 0 0 0
4 firm4 1 42 0 A-B
5 firm5 2 0 0 A
Upvotes: 1
Reputation: 56004
Using apply:
# paste column names
df$varCombination <-
apply(df[,2:ncol(df)]>0, 1,
function(i)paste(colnames(df[, 2:ncol(df)])[i], collapse = "-"))
# convert blank to NA
df$varCombination[df$varCombination == ""] <- NA
# result
df
# firm A B C varCombination
# 1 firm1 0 0 1 C
# 2 firm2 0 1 1 B-C
# 3 firm3 0 0 0 <NA>
# 4 firm4 1 42 0 A-B
# 5 firm5 2 0 0 A
Upvotes: 5