Reputation: 1360
I have a pandas data frame with columns Longitude
and Latitude
. I'd like to get X
and Y
from them. There is a function in utm
called from_latlon
that does this. It receives Latitude
and Longitude
and gives [X,Y]
. Here's what I do:
def get_X(row):
return utm.from_latlon(row['Latitude'], row['Longitude'])[0]
def get_Y(row):
return utm.from_latlon(row['Latitude'], row['Longitude'])[1]
df['X'] = df.apply(get_X, axis=1)
df['Y'] = df.apply(get_Y, axis=1)
I'd like to define a function get_XY
and apply from_latlon
just one time to save time. I took a look at here, here and here but I could not find a way to make two columns with one apply
function. Thanks.
Upvotes: 0
Views: 8632
Reputation: 4127
I merged a couple of the answers from a similar thread and now have a generic multi-column in, multi-column out template I use in Jupyter/pandas:
# plain old function doesn't know about rows/columns, it just does its job.
def my_func(arg1,arg2):
return arg1+arg2, arg1-arg2 # return multiple responses
df['sum'],df['difference'] = zip(*df.apply(lambda x: my_func(x['first'],x['second']),axis=1))
Upvotes: 1
Reputation: 251355
You can return a list from your function:
d = pandas.DataFrame({
"A": [1, 2, 3, 4, 5],
"B": [8, 88, 0, -8, -88]
})
def foo(row):
return [row["A"]+row["B"], row["A"]-row["B"]]
>>> d.apply(foo, axis=1)
A B
0 9 -7
1 90 -86
2 3 3
3 -4 12
4 -83 93
You can also return a Series. This lets you specify the column names of the return value:
def foo(row):
return pandas.Series({"X": row["A"]+row["B"], "Y": row["A"]-row["B"]})
>>> d.apply(foo, axis=1)
X Y
0 9 -7
1 90 -86
2 3 3
3 -4 12
4 -83 93
Upvotes: 6