Reputation: 121
Why is
julia> collect(partitions(1,2))
0-element Array{Any,1}
returned instead of
2-element Array{Any,1}:
[0,1]
[1,0]
and do I really have to
x = collect(partitions(n,m));
y = Array(Int64,length(x),length(x[1]));
for i in 1:length(x)
for j in 1:length(x[1])
y[i,j] = x[i][j];
end
end
to convert the result to a two-dimensional array?
Upvotes: 1
Views: 1019
Reputation: 121
The MATLAB script from http://www.mathworks.com/matlabcentral/fileexchange/28340-nsumk actually behaves the way I need, and is what I though that partitions() would do from the description given. The Julia version is
# k - sum, n - number of non-negative integers
function nsumk(k,n)
m = binomial(k+n-1,n-1);
d1 = zeros(Int16,m,1);
d2 = collect(combinations(collect((1:(k+n-1))),n-1));
d2 = convert(Array{Int16,2},hcat(d2...)');
d3 = ones(Int16,m,1)*(k+n);
dividers = [d1 d2 d3];
return diff(dividers,2)-1;
end
julia> nsumk(3,2)
4x2 Array{Int16,2}:
0 3
1 2
2 1
3 0
using daycaster's lovely hcat(x...) tidbit :) I still wish there would be a more compact way of doing this.
The the first mention of this approach seem to be https://au.mathworks.com/matlabcentral/newsreader/view_thread/52610, and as far as I can understand it is based on the "stars and bars" method https://en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)
Upvotes: 1
Reputation: 5756
one robust solution can be achieved using lexicographic premutations generation algorithm, originally By Donald Knuth plus classic partitions(n)
.
that is lexicographic premutations generator:
function lpremutations{T}(a::T)
b=Vector{T}()
sort!(a)
n=length(a)
while(true)
push!(b,copy(a))
j=n-1
while(a[j]>=a[j+1])
j-=1
j==0 && return(b)
end
l=n
while(a[j]>=a[l])
l-=1
end
tmp=a[l]
a[l]=a[j]
a[j]=tmp
k=j+1
l=n
while(k<l)
tmp=a[k]
a[k]=a[l]
a[l]=tmp
k+=1
l-=1
end
end
end
The above algorithm will generates all possible unique combinations of an array elements with repetition:
julia> lpremutations([2,2,0])
3-element Array{Array{Int64,1},1}:
[0,2,2]
[2,0,2]
[2,2,0]
Then we will generate all integer arrays that sum to n using partitions(n)
(forget the length of desired arrays m), and resize them to the lenght m using resize_!
function resize_!(x,m)
[x;zeros(Int,m-length(x))]
end
And main function looks like:
function lpartitions(n,m)
result=[]
for i in partitions(n)
append!(result,lpremutations(resize_!(i, m)))
end
result
end
Check it
julia> lpartitions(3,4)
20-element Array{Any,1}:
[0,0,0,3]
[0,0,3,0]
[0,3,0,0]
[3,0,0,0]
[0,0,1,2]
[0,0,2,1]
[0,1,0,2]
[0,1,2,0]
[0,2,0,1]
[0,2,1,0]
[1,0,0,2]
[1,0,2,0]
[1,2,0,0]
[2,0,0,1]
[2,0,1,0]
[2,1,0,0]
[0,1,1,1]
[1,0,1,1]
[1,1,0,1]
[1,1,1,0]
Upvotes: 2
Reputation: 12051
Here's another approach to your problem that I think is a little simpler, using the Combinatorics.jl library:
multisets(n, k) = map(A -> [sum(A .== i) for i in 1:n],
with_replacement_combinations(1:n, k))
This allocates a bunch of memory, but I think your current approach does too. Maybe it would be useful to make a first-class version and add it to Combinatorics.jl.
Examples:
julia> multisets(2, 1)
2-element Array{Array{Int64,1},1}:
[1,0]
[0,1]
julia> multisets(3, 5)
21-element Array{Array{Int64,1},1}:
[5,0,0]
[4,1,0]
[4,0,1]
[3,2,0]
[3,1,1]
[3,0,2]
[2,3,0]
[2,2,1]
[2,1,2]
[2,0,3]
⋮
[1,2,2]
[1,1,3]
[1,0,4]
[0,5,0]
[0,4,1]
[0,3,2]
[0,2,3]
[0,1,4]
[0,0,5]
The argument order is backwards from yours to match mathematical convention. If you prefer the other way, that can easily be changed.
Upvotes: 3
Reputation: 2707
From the wikipedia:
In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers.
For array conversion, try:
julia> x = collect(partitions(5,3))
2-element Array{Any,1}:
[3,1,1]
[2,2,1]
or
julia> x = partitions(5,3)
Base.FixedPartitions(5,3)
then
julia> hcat(x...)
3x2 Array{Int64,2}:
3 2
1 2
1 1
Upvotes: 3