Reputation: 12363
I wrote a Haskell code which has to solve the following problem : we have n files : f1, f2, f3 .... fn and I cut those files such a way that each slice has 100 lines
f1_1, f1_2, f1_3 .... f1_m
f2_1, f2_2, .... f2_n
...
fn_1, fn_2, .... fn_k
finally I construct a special data type (Dags) using slices in the following way
f1_1, f2_1, f3_1, .... fn_1 => Dag1
f1_2, f2_2, f3_2, ..... fn_2 => Dag2
....
f1_k, f2_k, f3_k, ..... fn_k => Dagk
the code that I wrote start by cutting all the files, then it couple the i-th elements of the results list and construct Dag using the final result list
it looks like this
-- # take a filename and cut the file in slices of 100 lines
sliceFile :: FilePath -> [[String]]
-- # take a list of lists and group the i-th elements into list
coupleIthElement :: [[String]] -> [[String]]
-- # take a list of lines and create a DAG
makeDags :: [String] -> Dag
-- # final code look like this
makeDag_ :: [FilePath] -> [Dag]
makeDags files = map makeDags $ coupleIthElement (concat (map sliceFile files))
The problem is that this code is non-efficient because :
it needs storing all the files in memory in list form
the garbage collector is not working efficiently since all fonctions need the results list of the previous fonction
How could I re-write my program to take advantage of garbage collector work and Laziness of Haskell ?
if not possible or easier, what can i do to be more efficient even a bit ?
thanks for reply
edit
coupleIthElement ["abc", "123", "xyz"]
must return ["a1x","b2y","c3z"]
of cause the 100 lines are arbitrary selected using a particular criteria upon some element of the lines but i discard this aspect to make the problem more easier to understand,
another edition
data Dag = Dag ([(Int, String)], [((Int, Int), Int)]) deriving Show
test_dag = Dag ([(1, "a"),(2, "b"),(3, "c")],[((1,2),1),((1,3),1)])
test_dag2 = Dag ([],[])
the first list is each vertice define by the number and the label, the second list is the edges ((1,2),3)
means edge between vertice 1 and 2 with the cost 3
Upvotes: 2
Views: 440
Reputation: 28097
A few points:
1) Have you considered using fgl? It's probably more efficient than your own Dag
implementation. If you really need to use Dag
, you could construct your graphs with fgl
then convert them to Dag
when they're complete.
2) It seems like you don't actually use the slices when constructing your graphs, rather they control how many graphs you have. If so, how about something like this:
dagFromHandles :: [Handle] -> IO Dag
dagFromHandles = fmap makeDags . mapM hGetLine
allDags :: [FilePath] -> IO [Dag]
allDags listOfFiles = do
handles <- mapM (flip openFile ReadMode) listOfFiles
replicateM 100 (dagFromHandles handles)
This assumes that each file has at least 100 lines, and any extra lines will be ignored. Even better would be if you had a function that would consume a Dag, then you could do
useDag :: Dag -> IO ()
runDags :: [FilePath] -> IO ()
runDags listOfFiles = do
handles <- mapM (flip openFile ReadMode) listOfFiles
replicateM_ 100 (dagFromHandles handles >>= useDag)
This should make more efficient use of garbage collection.
Of course this assumes that I understand the problem properly, and I'm not certain that I do. Note that concat (map sliceFile)
should be a no-op (sliceFile
would need to be in IO as you've defined the type, but ignoring that for now), so I don't see why you're bothering with it at all.
Upvotes: 2
Reputation: 92976
If it's not needed to process your file in slices, avoid this. Haskell does this automatically! In Haskell, you think of IO as a stream. Data is read from input, as soon as it's needed and discarded, as soon as it's unused. So for instance, this is an easy file-copying programm:
main = interact id
interact
has the signature interact :: (String -> String) -> IO ()
, and feeds the input into a function which handles it and produces some output, which is written to stdout. This program is more efficient then most C-implementations, as the runtime automatically buffers the input and output.
If you want to understand laziness, you have to forget all the wisdom you learned as a imperative programmer and have to think about a program as a description to modify data, not as a set of instructions - data is only processed when needed!
The key point, why your data may be handled the wrong way is the multiple traversion of the list. Your function makeDags
traverses the transposed the slices list one by one, so the elements of the original list may not be discarded. What you should try, is to write your function in a way like this:
sliceFile :: FilePath -> [[String]]
sliceFile fp = do
f <- readFile fp
let l = lines fp
slice [] = []
slice x = ll : slice ls where (ll,ls) = splitAt 100 x
return slice l
sliceFirstRow :: [[String]] -> ([String],[[String]])
sliceFirstRow list = unzip $ map (\(x:xs) -> (x,xs)) list
makeDags :: [[String]] -> [Dag]
makeDags [[]] = []
makeDags list = makeDag firstRow : makeDags restOfList where
(firstRow,restOfList) = sliceFirstRow list
This function may be a solution, since the first row is no longer referenced, when it's done. But in the most places, this is a result of laziness, so you could probably try to use seq
to force building the Dags and allowing the IO data to be garbage-collected. (If you don't force building the dags, the data can't be garbage collected).
But anyway, I could provide a more helpfull answer, if you give some informations about what these dags are.
Upvotes: 1