dfrankow
dfrankow

Reputation: 21357

From long to wide data with multiple columns

Suggestions for how to smoothly get from foo to foo2 (preferably with tidyr or reshape2 packages)?

This is kind of like this question, but not exactly I think, because I don't want to auto-number columns, just widen multiple columns. It's also kind of like this question, but again, I don't think I want the columns to vary with a row value as in that answer. Or, a valid answer to this question is to convince me it's exactly like one of the others. The solution in the second question of "two dcasts plus a merge" is the most attractive right now, because it is comprehensible to me.

foo:

foo = data.frame(group=c('a', 'a', 'b', 'b', 'c', 'c'),
                  times=c('before', 'after', 'before', 'after', 'before', 'after'),
                  action_rate=c(0.1,0.15, 0.2, 0.18,0.3, 0.35),
                  num_users=c(100, 100, 200, 200, 300, 300))
foo <- transform(foo,
                 action_rate_c95 = 1.95 * sqrt(action_rate*(1-action_rate)/num_users))

> foo
  group  times action_rate num_users action_rate_c95
1     a before        0.10       100      0.05850000
2     a  after        0.15       100      0.06962893
3     b before        0.20       200      0.05515433
4     b  after        0.18       200      0.05297400
5     c before        0.30       300      0.05159215
6     c  after        0.35       300      0.05369881

foo2:

foo2 <- data.frame(group=c('a', 'b', 'c'),
                   action_rate_before=c(0.1,0.2, 0.3),
                   action_rate_after=c(0.15, 0.18,0.35),
                   action_rate_c95_before=c(0.0585,0.055, 0.05159),
                   action_rate_c95_after=c(0.069, 0.0530,0.0537),
                   num_users=c(100, 200, 300))

> foo2
  group action_rate_before action_rate_after action_rate_c95_before
1     a                0.1              0.15                 0.0585
2     b                0.2              0.18                 0.0550
3     c                0.3              0.35                 0.05159
  action_rate_c95_after num_users
1                 0.0690       100
2                 0.0530       200
3                 0.0537       300

EDIT: Now I'd probably try to do it with pivot_wider from tidyr.

Upvotes: 8

Views: 7756

Answers (3)

akrun
akrun

Reputation: 886938

Here is a base R option with reshape

reshape(foo, idvar=c("group", "num_users"), timevar="times", direction="wide")
#  group num_users action_rate.before action_rate_c95.before action_rate.after
#1     a       100                0.1             0.05850000              0.15
#3     b       200                0.2             0.05515433              0.18
#5     c       300                0.3             0.05159215              0.35
#  action_rate_c95.after
#1            0.06962893
#3            0.05297400
#5            0.05369881

Upvotes: 6

Steven Beaupr&#233;
Steven Beaupr&#233;

Reputation: 21621

Here's another alternative using tidyr:

library(tidyr)
foo %>%
  gather(key, value, -group, -times, -num_users) %>%
  unite(col, key, times) %>%
  spread(col, value)

Which gives:

#  group num_users action_rate_after action_rate_before action_rate_c95_after
#1     a       100              0.15                0.1            0.06962893
#2     b       200              0.18                0.2            0.05297400
#3     c       300              0.35                0.3            0.05369881
#  action_rate_c95_before
#1             0.05850000
#2             0.05515433
#3             0.05159215

Upvotes: 6

HubertL
HubertL

Reputation: 19544

You can use data.table instead of reshape2, because its dcast() function accepts several variables, and is faster too:

require(data.table)
setDT(foo)
dcast(foo,group+num_users~times,value.var=c("action_rate","action_rate_c95"))

   group num_users action_rate_after action_rate_before action_rate_c95_after action_rate_c95_before
1:     a       100              0.15                0.1            0.06962893             0.05850000
2:     b       200              0.18                0.2            0.05297400             0.05515433
3:     c       300              0.35                0.3            0.05369881             0.05159215

Upvotes: 10

Related Questions