Reputation: 5073
I modified the code from a previous experiment (Agner Fog's Optimizing Assembly, example 12.10a) to make it more dependent:
movsd xmm2, [x]
movsd xmm1, [one]
xorps xmm0, xmm0
mov eax, coeff
L1:
movsd xmm3, [eax]
mulsd xmm3, xmm1
mulsd xmm1, xmm2
addsd xmm1, xmm3
add eax, 8
cmp eax, coeff_end
jb L1
And now it takes ~13 cycles per iteration, but I have no idea why so much. Please help me understand.
(update) I'm sorry. Yes, definetely @Peter Cordes is right- it takes 9 cycles per iteration in fact. The misunderstanding is caused by myself. I missed two similar pieces of codes ( instructions swapped), the 13-cycles code is here:
movsd xmm2, [x]
movsd xmm1, [one]
xorps xmm0, xmm0
mov eax, coeff
L1:
movsd xmm3, [eax]
mulsd xmm1, xmm2
mulsd xmm3, xmm1
addsd xmm1, xmm3
add eax, 8
cmp eax, coeff_end
jb L1
Upvotes: 1
Views: 377
Reputation: 33601
With the addsd
change suggested in my comments above, --> addsd xmm0,xmm3
, this can be coded to use the full width registers and the performance is twice as fast.
Loosely:
For the initial value of ones
, it needs to be:
double ones[2] = { 1.0, x }
And we need to replace x
with x2
:
double x2[2] = { x * x, x * x }
If there is an odd number of coefficients, pad it with a zero to produce an even number of them.
And, changing the pointer increment to 16.
Here are the test results I got. I did a number of trials and took the ones that had the best time and elongated the time by doing 100 iterations. std is the C version, dbl is your version, and qed is the "wide" version:
R=1463870188
C=100
T=100
I=100
x: 3.467957099973322e+00 3.467957099973322e+00
one: 1.000000000000000e+00 3.467957099973322e+00
x2: 1.202672644725538e+01 1.202672644725538e+01
std: 2.803772098439484e+56 (ELAP: 0.000019312)
dbl: 2.803772098439484e+56 (ELAP: 0.000019312)
qed: 2.803772098439492e+56 (ELAP: 0.000009060)
rtn_loop: 2.179378907910304e+55 2.585834207648461e+56
rtn_shuf: 2.585834207648461e+56 2.179378907910304e+55
rtn_add: 2.803772098439492e+56 2.585834207648461e+56
This was done on an i7 920 @ 2.67 GHz.
I think if you take the elapsed numbers and convert them, you'll see that your version is faster than you think.
I apologize, in advance, for switching to AT&T syntax as I had difficulty getting the assembler to work the other way. Again, sorry. Also, I'm using linux, so I used the rdi rsi
registers to pass the coefficient pointers. If you're on windows, the ABI is different and you'll have to adjust for that.
I did a C version and diassembled it. It was virtually identical to your code except that it rearranged the non-xmm instructions a bit, which I've added below.
I believe I posted all the files, so you could conceivably run this on your system if you wished.
Here's the original code:
# xmmloop/dbl.s -- implement using single double
.globl dbl
# dbl -- compute result using single double
#
# arguments:
# rdi -- pointer to coeff vector
# rsi -- pointer to coeff vector end
dbl:
movsd x(%rip),%xmm2 # get x value
movsd one(%rip),%xmm1 # get ones
xorps %xmm0,%xmm0 # sum = 0
dbl_loop:
movsd (%rdi),%xmm3 # c[i]
add $8,%rdi # increment to next vector element
cmp %rsi,%rdi # done yet?
mulsd %xmm1,%xmm3 # c[i]*x^i
mulsd %xmm2,%xmm1 # x^(i+1)
addsd %xmm3,%xmm0 # sum += c[i]*x^i
jb dbl_loop # no, loop
retq
Here's the code changed to use the movapd
et. al:
# xmmloop/qed.s -- implement using single double
.globl qed
# qed -- compute result using single double
#
# arguments:
# rdi -- pointer to coeff vector
# rsi -- pointer to coeff vector end
qed:
movapd x2(%rip),%xmm2 # get x^2 value
movapd one(%rip),%xmm1 # get [1,x]
xorpd %xmm4,%xmm4 # sum = 0
qed_loop:
movapd (%rdi),%xmm3 # c[i]
add $16,%rdi # increment to next coefficient
cmp %rsi,%rdi # done yet?
mulpd %xmm1,%xmm3 # c[i]*x^i
mulpd %xmm2,%xmm1 # x^(i+2)
addpd %xmm3,%xmm4 # sum += c[i]*x^i
jb qed_loop # no, loop
movapd %xmm4,rtn_loop(%rip) # save intermediate DEBUG
movapd %xmm4,%xmm0 # get lower sum
shufpd $1,%xmm4,%xmm4 # get upper value into lower half
movapd %xmm4,rtn_shuf(%rip) # save intermediate DEBUG
addsd %xmm4,%xmm0 # add upper sum to lower
movapd %xmm0,rtn_add(%rip) # save intermediate DEBUG
retq
Here's a C version of the code:
// xmmloop/std -- compute result using C code
#include <xmmloop.h>
// std -- compute result using C
double
std(const double *cur,const double *ep)
{
double xt;
double xn;
double ci;
double sum;
xt = x[0];
xn = one[0];
sum = 0;
for (; cur < ep; ++cur) {
ci = *cur; // get c[i]
ci *= xn; // c[i]*x^i
xn *= xt; // x^(i+1)
sum += ci; // sum += c[i]*x^i
}
return sum;
}
Here's the test program I used:
// xmmloop/xmmloop -- test program
#define _XMMLOOP_GLO_
#include <xmmloop.h>
// tvget -- get high precision time
double
tvget(void)
{
struct timespec ts;
double sec;
clock_gettime(CLOCK_REALTIME,&ts);
sec = ts.tv_nsec;
sec /= 1e9;
sec += ts.tv_sec;
return sec;
}
// timeit -- get best time
void
timeit(fnc_p proc,double *cofptr,double *cofend,const char *tag)
{
double tvbest;
double tvbeg;
double tvdif;
double sum;
sum = 0;
tvbest = 1e9;
for (int trycnt = 1; trycnt <= opt_T; ++trycnt) {
tvbeg = tvget();
for (int iter = 1; iter <= opt_I; ++iter)
sum = proc(cofptr,cofend);
tvdif = tvget();
tvdif -= tvbeg;
if (tvdif < tvbest)
tvbest = tvdif;
}
printf("%s: %.15e (ELAP: %.9f)\n",tag,sum,tvbest);
}
// main -- main program
int
main(int argc,char **argv)
{
char *cp;
double *cofptr;
double *cofend;
double *cur;
double val;
long rseed;
int cnt;
--argc;
++argv;
rseed = 0;
cnt = 0;
for (; argc > 0; --argc, ++argv) {
cp = *argv;
if (*cp != '-')
break;
switch (cp[1]) {
case 'C':
cp += 2;
cnt = strtol(cp,&cp,10);
break;
case 'R':
cp += 2;
rseed = strtol(cp,&cp,10);
break;
case 'T':
cp += 2;
opt_T = (*cp != 0) ? strtol(cp,&cp,10) : 1;
break;
case 'I':
cp += 2;
opt_I = (*cp != 0) ? strtol(cp,&cp,10) : 1;
break;
}
}
if (rseed == 0)
rseed = time(NULL);
srand48(rseed);
printf("R=%ld\n",rseed);
if (cnt == 0)
cnt = 100;
if (cnt & 1)
++cnt;
printf("C=%d\n",cnt);
if (opt_T == 0)
opt_T = 100;
printf("T=%d\n",opt_T);
if (opt_I == 0)
opt_I = 100;
printf("I=%d\n",opt_I);
cofptr = malloc(sizeof(double) * cnt);
cofend = &cofptr[cnt];
val = drand48();
for (; val < 3; val += 1.0);
x[0] = val;
x[1] = val;
DMP(x);
one[0] = 1.0;
one[1] = val;
DMP(one);
val *= val;
x2[0] = val;
x2[1] = val;
DMP(x2);
for (cur = cofptr; cur < cofend; ++cur) {
val = drand48();
val *= 1e3;
*cur = val;
}
timeit(std,cofptr,cofend,"std");
timeit(dbl,cofptr,cofend,"dbl");
timeit(qed,cofptr,cofend,"qed");
DMP(rtn_loop);
DMP(rtn_shuf);
DMP(rtn_add);
return 0;
}
And the header file:
// xmmloop/xmmloop.h -- common control
#ifndef _xmmloop_xmmloop_h_
#define _xmmloop_xmmloop_h_
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#ifdef _XMMLOOP_GLO_
#define EXTRN_XMMLOOP /**/
#else
#define EXTRN_XMMLOOP extern
#endif
#define XMMALIGN __attribute__((aligned(16)))
EXTRN_XMMLOOP int opt_T;
EXTRN_XMMLOOP int opt_I;
EXTRN_XMMLOOP double x[2] XMMALIGN;
EXTRN_XMMLOOP double x2[2] XMMALIGN;
EXTRN_XMMLOOP double one[2] XMMALIGN;
EXTRN_XMMLOOP double rtn_loop[2] XMMALIGN;
EXTRN_XMMLOOP double rtn_shuf[2] XMMALIGN;
EXTRN_XMMLOOP double rtn_add[2] XMMALIGN;
#define DMP(_sym) \
printf(#_sym ": %.15e %.15e\n",_sym[0],_sym[1]);
typedef double (*fnc_p)(const double *cofptr,const double *cofend);
double std(const double *cofptr,const double *cofend);
double dbl(const double *cofptr,const double *cofend);
double qed(const double *cofptr,const double *cofend);
#endif
Upvotes: 2
Reputation: 364240
It runs at exactly one iteration per 9c for me, on a Core2 E6600, which is expected:
movsd xmm3, [eax] ; independent, depends only on eax
A: mulsd xmm3, xmm1 ; 5c: depends on xmm1:C from last iteration
B: mulsd xmm1, xmm2 ; 5c: depends on xmm1:C from last iteration
C: addsd xmm1, xmm3 ; 3c: depends on xmm1:B from THIS iteration (and xmm3:A from this iteration)
When xmm1:C is ready from iteration i
, the next iteration can start calculating:
Regardless of which one runs first, both have to finish before C
can run. So the loop-carried dependency chain is 5 + 3 cycles, +1c for the resource conflict that stops both multiplies from starting in the same cycle.
This slows down to one iteration per ~11c when the array is 8B * 128 * 1024. If you're testing with an even bigger array instead of using a repeat-loop around what you posted, then that's why you're seeing a higher latency.
If a load arrives late, there's no way for the CPU to "catch up", since it delays the loop-carried dependency chain. If the load was only needed in a dependency chain that forked off from the loop-carried chain, then the pipeline could absorb an occasional slow load more easily. So, some loops can be more sensitive to memory delays than others.
default REL
%macro IACA_start 0
mov ebx, 111
db 0x64, 0x67, 0x90
%endmacro
%macro IACA_end 0
mov ebx, 222
db 0x64, 0x67, 0x90
%endmacro
global _start
_start:
movsd xmm2, [x]
movsd xmm1, [one]
xorps xmm0, xmm0
mov ecx, 10000
outer_loop:
mov eax, coeff
IACA_start ; outside the loop
ALIGN 32 ; this matters on Core2, .78 insn per cycle vs. 0.63 without
L1:
movsd xmm3, [eax]
mulsd xmm3, xmm1
mulsd xmm1, xmm2
addsd xmm1, xmm3
add eax, 8
cmp eax, coeff_end
jb L1
IACA_end
dec ecx
jnz outer_loop
;mov eax, 1
;int 0x80 ; exit() for 32bit code
xor edi, edi
mov eax, 231 ; exit_group(0). __NR_exit = 60.
syscall
section .data
x:
one: dq 1.0
section .bss
coeff: resq 24*1024 ; 6 * L1 size. Doesn't run any faster when it fits in L1 (resb)
coeff_end:
$ asm-link interiteration-test.asm
+ yasm -felf64 -Worphan-labels -gdwarf2 interiteration-test.asm
+ ld -o interiteration-test interiteration-test.o
$ perf stat ./interiteration-test
Performance counter stats for './interiteration-test':
928.543744 task-clock (msec) # 0.995 CPUs utilized
152 context-switches # 0.164 K/sec
1 cpu-migrations # 0.001 K/sec
52 page-faults # 0.056 K/sec
2,222,536,634 cycles # 2.394 GHz (50.14%)
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
1,723,575,954 instructions # 0.78 insns per cycle (75.06%)
246,414,304 branches # 265.377 M/sec (75.16%)
51,483 branch-misses # 0.02% of all branches (74.74%)
0.933372495 seconds time elapsed
Each branch / every 7 instructions is one iteration of the inner loop.
$ bc -l
bc 1.06.95
1723575954 / 7
246225136.28571428571428571428
# ~= number of branches: good
2222536634 / .
9.026
# cycles per iteration
(not counting the nop
s from ALIGN
):
$ iaca.sh -arch IVB interiteration-test
Intel(R) Architecture Code Analyzer Version - 2.1
Analyzed File - interiteration-test
Binary Format - 64Bit
Architecture - IVB
Analysis Type - Throughput
Throughput Analysis Report
--------------------------
Block Throughput: 9.00 Cycles Throughput Bottleneck: InterIteration
Port Binding In Cycles Per Iteration:
-------------------------------------------------------------------------
| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 |
-------------------------------------------------------------------------
| Cycles | 2.0 0.0 | 1.0 | 0.5 0.5 | 0.5 0.5 | 0.0 | 2.0 |
-------------------------------------------------------------------------
N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred
* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis
| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
---------------------------------------------------------------------
| 1 | | | 0.5 0.5 | 0.5 0.5 | | | | movsd xmm3, qword ptr [eax]
| 1 | 1.0 | | | | | | | mulsd xmm3, xmm1
| 1 | 1.0 | | | | | | CP | mulsd xmm1, xmm2
| 1 | | 1.0 | | | | | CP | addsd xmm1, xmm3
| 1 | | | | | | 1.0 | | add eax, 0x8
| 1 | | | | | | 1.0 | | cmp eax, 0x63011c
| 0F | | | | | | | | jb 0xffffffffffffffe7
Total Num Of Uops: 6
Upvotes: 3