Reputation: 6732
I want to enforce explicit conversion between structs kind of like native types:
int i1;
i1 = some_float; // this generates a warning
i1 = int(some_float): // this is OK
int i3 = some_float; // this generates a warning
I thought to use an assignment operator and copy constructor to do the same thing, but the behavior is different:
Struct s1;
s1 = other_struct; // this calls the assignment operator which generates my warning
s1 = Struct(other_struct) // this calls the copy constructor to generate a new Struct and then passes that new instance to s1's assignment operator
Struct s3 = other_struct; // this calls the COPY CONSTRUCTOR and succeeds with no warning
Are there any tricks to get that third case Struct s3 = other_struct;
construct s3 with the default constructor and then call the assignment operator?
This all compiles and runs as it should. The default behavior of C++ is to call the copy constructor instead of the assignment operator when you create a new instance and call the copy constructor at once, (i.e. MyStruct s = other_struct;
becomes MyStruct s(other_struct)
; not MyStruct s; s = other_struct;
. I'm just wondering if there are any tricks to get around that.
EDIT: The "explicit" keyword is just what I needed!
class foo {
foo(const foo& f) { ... }
explicit foo(const bar& b) { ... }
foo& operator =(const foo& f) { ... }
};
foo f;
bar b;
foo f2 = f; // this works
foo f3 = b; // this doesn't, thanks to the explicit keyword!
foo f4 = foo(b); // this works - you're forced to do an "explicit conversion"
Upvotes: 0
Views: 1684
Reputation: 56956
Disclaimer: I'm ready to take the downvotes on this, since this doesn't answer the question. But this could be useful to the OP.
I think it is a very bad idea to think of the copy constructor as default construction + assignment. It is the other way around:
struct some_struct
{
some_struct(); // If you want a default constructor, fine
some_struct(some_struct const&); // Implement it in the most natural way
some_struct(foo const&); // Implement it in the most natural way
void swap(some_struct&) throw(); // Implement it in the most efficient way
// Google "copy and swap idiom" for this one
some_struct& operator=(some_struct x) { x.swap(*this); return *this; }
// Same idea
some_struct& operator=(foo const& x)
{
some_struct tmp(x);
tmp.swap(*this);
return *this;
}
};
Implementing things that way is fool proof, and is the best you can obtain in term of conversion semantics in C++, so it is the way to go here.
Upvotes: 4
Reputation: 2238
You can get around this if you overload the type cast operator for other_struct, and edit the original structure accordingly. That said, it's extremely messy and there generally isn't a good reason to do so.
#include <iostream>
using namespace std;
struct bar;
struct foo {
explicit foo() {
cout << "In foo default constructor." << endl;
}
explicit foo(bar const &) {
cout << "In foo 'bar' contructor." << endl;
}
foo(foo const &) {
cout << "In foo constructor." << endl;
}
foo const & operator=(bar const &) {
cout << "In foo = operator." << endl;
return *this;
}
};
struct bar {
operator foo() {
cout << "In bar cast overload." << endl;
foo x;
x = *this;
return x;
}
};
int main() {
bar b;
foo f = b;
return 0;
}
Outputs:
In bar cast overload. In foo default constructor. In foo = operator. In foo constructor. In foo constructor.
Upvotes: 3
Reputation: 15221
I don't think so. When you write
Struct s3 = other_struct;
It looks like an assignment, but really it's just declarative syntax that calls a constructor.
Upvotes: 0
Reputation: 40859
In short, no.
The long version...actually that's about it. That's just not how it works. Had to come up with something to fill the character requirement though.
Upvotes: 2