Reputation: 53
I'm new to Haskell and trying to write simple program to find maximal element and it's index from intput. I receive values to compare one by one. Maximal element I'm holding in maxi variable, it's index - in maxIdx. Here's my program:
loop = do
let maxi = 0
let maxIdx = 0
let idx = 0
let idxN = 0
replicateM 5 $ do
input_line <- getLine
let element = read input_line :: Int
if maxi < element
then do
let maxi = element
let maxIdx = idx
hPutStrLn stderr "INNER CHECK"
else
hPutStrLn stderr "OUTER CHECK"
let idx = idxN + 1
let idxN = idx
print maxIdx
loop
Even though I know elements coming are starting from bigger to smaller (5, 4, 3, 2, 1) program enters INNER CHECK all the time (it should happen only for the first element!) and maxIdx is always 0. What am I doing wrong? Thanks in advance.
Upvotes: 1
Views: 173
Reputation: 2983
I think alf's answer is very good, but for what it's worth, here's how I would interpret your intention.
{-# LANGUAGE FlexibleContexts #-}
module Main where
import System.IO
import Control.Monad.State
data S = S { maximum :: Int
, maximumIndex :: Int
, currentIndex :: Int }
update :: Int -> Int -> S -> S
update m mi (S _ _ ci) = S m mi ci
increment :: S -> S
increment (S m mi ci) = S m mi (ci+1)
next :: (MonadIO m, MonadState S m) => m ()
next = do
S maxi maxIdx currIdx <- get
input <- liftIO $ getLine
let element = read input :: Int
if maxi < element
then do
modify (update element currIdx)
liftIO $ hPutStrLn stderr "INNER CHECK"
else
liftIO $ hPutStrLn stderr "OUTER CHECK"
modify increment
run :: Int -> IO S
run n = execStateT (replicateM_ n next) (S 0 0 0)
main :: IO ()
main = do
S maxi maxIdx _ <- run 5
putStrLn $ "maxi: " ++ (show maxi) ++ " | maxIdx: " ++ (show maxIdx)
This uses a monad transformer to combine a stateful computation with IO. The get
function retrieves the current state, and the modify
function lets you change the state.
Upvotes: 0
Reputation: 8523
Anyway, let's have fun.
loop = do
let maxi = 0
let maxIdx = 0
let idx = 0
let idxN = 0
replicateM 5 $ do
input_line <- getLine
let element = read input_line :: Int
if maxi < element
then do
let maxi = element
let maxIdx = idx
hPutStrLn stderr "INNER CHECK"
else
hPutStrLn stderr "OUTER CHECK"
let idx = idxN + 1
let idxN = idx
print maxIdx
loop
is not a particularly Haskelly code (and as you know is not particularly correct).
Let's make if Haskellier.
What do we do here? We've an infinite loop, which is reading a line 5 times, does something to it, and then calls itself again for no particular reason.
Let's split it:
import Control.Monad
readFiveLines :: IO [Int]
readFiveLines = replicateM 5 readLn
addIndex :: [Int] -> [(Int, Int)]
addIndex xs = zip xs [0..]
findMaxIndex :: [Int] -> Int
findMaxIndex xs = snd (maximum (addIndex xs))
loop :: ()
loop = loop
main :: IO ()
main = do xs <- readFiveLines
putStrLn (show (findMaxIndex xs))
snd
returns the second element from a tuple; readLn
is essentially read . getLine
; zip
takes two lists and returns a list of pairs; maximum
finds a maximum value.
I left loop
intact in its original beauty.
You can be even Haskellier if you remember that something (huge expression)
can be replaced with something $ huge expression
($
simply applies its left operand to its right operand), and the functions can be combined with .
: f (g x)
is the same as (f . g) x
, or f . g $ x
(see? it's working for the left side as well!). Additionally, zip x y
can be rewritten as x `zip` y
import Control.Monad
readFiveLines :: IO [Int]
readFiveLines = replicateM 5 readLn
addIndex :: [Int] -> [(Int, Int)]
addIndex = (`zip` [0..])
findMaxIndex :: [Int] -> Int
findMaxIndex = snd . maximum . addIndex
main :: IO ()
main = do xs <- readFiveLines
putStrLn . show . findMaxIndex $ xs
As for debug print, there's a package called Debug.Trace
and a function traceShow
which prints its first argument (formatted with show
, hence the name) to stderr
, and returns its second argument:
findMaxIndex :: [Int] -> Int
findMaxIndex = snd . (\xs -> traceShow xs (maximum xs)) . addIndex
That allows you to tap onto any expression and see what's coming in (and what are the values around — you can show
tuples, lists, etc.)
Upvotes: 9