Reputation: 9018
I have a "mydata" data frame that is 2 columns: a date column and a value column. I would like to append columns to the data frame that are moving average of the "value" column at various windows.
Currently mydata has 2 columns
Column 1 - date
Column 2 - value
I'd like column 3 to be a 2 period moving average of the value column, column 4 to be a 3 period moving average of the value column,etc. until the last column is a moving average of 9 periods
so I'd like to add these columns:
Column 3 - SMA(value, 2)
Column 4 - SMA(value, 3)
Column 5 - SMA(value, 4)
Column 6 - SMA(value, 5)
Column 7 - SMA(value, 6)
Column 8 - SMA(value, 7)
Column 9 - SMA(value, 8)
Column 10 - SMA(value, 9)
here is the code
library(TTR)
date = seq(as.Date("2016-01-01"),as.Date("2016-01-10"),"day")
value =c(1,2,3,4,5,6,7,8,9,10)
mydata = data.frame (date, value)
z = zoo(value, date)
SMA(z, n=2)# this would be 3rd column of data frame
SMA(z, n=3)# this would be 4th column of data frame
etc.....
thank you.
Upvotes: 2
Views: 851
Reputation: 83225
You could achieve this with the data.table
package and the rollmeanr
function (or the rollmean
function) from the zoo
package:
library(data.table)
library(zoo)
# method 1:
setDT(mydata)[, paste0('MA',2:9) := lapply(2:9, function(x) rollmeanr(value, x, fill = NA))][]
# method 2:
setDT(mydata)[, paste0('MA',2:9) := lapply(2:9, rollapplyr, data = value, mean, fill = NA)][]
which both give:
> mydata
date value MA2 MA3 MA4 MA5 MA6 MA7 MA8 MA9
1: 2016-01-01 1 NA NA NA NA NA NA NA NA
2: 2016-01-02 2 1.5 NA NA NA NA NA NA NA
3: 2016-01-03 3 2.5 2 NA NA NA NA NA NA
4: 2016-01-04 4 3.5 3 2.5 NA NA NA NA NA
5: 2016-01-05 5 4.5 4 3.5 3 NA NA NA NA
6: 2016-01-06 6 5.5 5 4.5 4 3.5 NA NA NA
7: 2016-01-07 7 6.5 6 5.5 5 4.5 4 NA NA
8: 2016-01-08 8 7.5 7 6.5 6 5.5 5 4.5 NA
9: 2016-01-09 9 8.5 8 7.5 7 6.5 6 5.5 5
10: 2016-01-10 10 9.5 9 8.5 8 7.5 7 6.5 6
In response to your comment, you can add the log
values by chaining a similar operation:
setDT(mydata)[, paste0('MA',2:9) := lapply(2:9, function(x) rollmeanr(value, x, fill = NA))
][, paste0('ln',2:9) := lapply(.SD, log), .SDcols = 3:10]
which gives:
> mydata
date value MA2 MA3 MA4 MA5 MA6 MA7 MA8 MA9 ln2 ln3 ln4 ln5 ln6 ln7 ln8 ln9
1: 2016-01-01 1 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2: 2016-01-02 2 1.5 NA NA NA NA NA NA NA 0.4054651 NA NA NA NA NA NA NA
3: 2016-01-03 3 2.5 2 NA NA NA NA NA NA 0.9162907 0.6931472 NA NA NA NA NA NA
4: 2016-01-04 4 3.5 3 2.5 NA NA NA NA NA 1.2527630 1.0986123 0.9162907 NA NA NA NA NA
5: 2016-01-05 5 4.5 4 3.5 3 NA NA NA NA 1.5040774 1.3862944 1.2527630 1.098612 NA NA NA NA
6: 2016-01-06 6 5.5 5 4.5 4 3.5 NA NA NA 1.7047481 1.6094379 1.5040774 1.386294 1.252763 NA NA NA
7: 2016-01-07 7 6.5 6 5.5 5 4.5 4 NA NA 1.8718022 1.7917595 1.7047481 1.609438 1.504077 1.386294 NA NA
8: 2016-01-08 8 7.5 7 6.5 6 5.5 5 4.5 NA 2.0149030 1.9459101 1.8718022 1.791759 1.704748 1.609438 1.504077 NA
9: 2016-01-09 9 8.5 8 7.5 7 6.5 6 5.5 5 2.1400662 2.0794415 2.0149030 1.945910 1.871802 1.791759 1.704748 1.609438
10: 2016-01-10 10 9.5 9 8.5 8 7.5 7 6.5 6 2.2512918 2.1972246 2.1400662 2.079442 2.014903 1.945910 1.871802 1.791759
Upvotes: 5