Reputation: 19
I'm creating a stack class as an exercise trying to learn some c++ concepts (initializer lists, memory management and templates here). I've run into something that I can't get my head around.
In function void Stack::push(const T& item), if I uncomment the delete [] data; line, my code runs well when the template argument is for example int or char. But with std::string, I get weird memory errors.
My thinking here is that I need a bigger array -> arrays can't be resized -> I create a new one -> I deallocate the memory I needed for the one that's soon to be not needed -> I make the existing pointer point to a new memory address where I create the bigger array.
Now, when I comment the delete line, the code runs well even with std::string, but I can't see why I can't do the delete operation safely with all types.
Any insights will be appreciated.
#include <iostream>
#include <stdio.h>
#include <memory.h>
template<class T>
class Stack
{
T* data;
int sz;
public:
//Stack(){sz=0;}
Stack(const std::initializer_list<T>&);
~Stack();
void push(const T&);
T& pop();
void show() const;
};
template<class T>
Stack<T>::Stack(const std::initializer_list<T> &list)
{
sz=0;
data = new T[list.size()];
for (auto i : list) {
data[sz] = i;
++sz;
}
std::cout<< "Created with sz: "<< sz<<std::endl;
}
template<class T>
Stack<T>::~Stack()
{
delete [] data;
}
template<class T>
void Stack<T>::push(const T& item) {
std::cout<<"push "<<item<<std::endl;
T* arr = new T[sz];
memcpy(arr, data, sz*sizeof(T));
//delete [] data;
data = new T[sz + 1];
memcpy(data, arr, sz*sizeof(T));
++sz;
data[sz - 1] = item;
std::cout<<"new size: "<<sz<<", bytes: "<<sz*sizeof(T)<<std::endl;
}
template<class T>
T& Stack<T>::pop()
{
if(sz > 0) {
std::cout<<"pop "<<data[sz-1]<<std::endl;
std::cout<<"new size: "<<sz-1<<std::endl;
return data[--sz];
}
else
return data[0];
}
template<class T>
void Stack<T>::show() const
{
for (int i=0; i<sz; i++) {
std::cout<<data[i]<<" ";
}
std::cout<<std::endl;
}
int main(){
Stack<int> s = {1,2,3,4,5,6,7,8,9,10,11};
s.show();
s.push(12);
s.push(13);
s.push(14);
s.pop();
s.pop();
s.push(15);
s.push(16);
s.show();
Stack<std::string> d = {"one","two","three"};
d.show();
d.pop();
d.push("four");
d.show();
return 0;
}
Upvotes: 1
Views: 101
Reputation: 409176
Don't use memcpy
to copy objects, that will copy the bits alright, but for some object a bit-wise copy is not correct as the copy constructor (or copy assignment operator) Will not be used.
A good and simple example is if you have a stack of std::string
objects. When you do a bit-wise copy (with memcpy
) the contents of the std::string
objects are copied, but that basically is just a pointer and a size. When you do a bit-wise copy then you will have two std::string
objects referencing the same memory. Destroying one of those object will lead to the other having a stray pointer to some memory (that used to contain the string) that no longer is owned by your program.
To solve this use std::copy
instead to copy the objects, it will do the right thing.
Unrelated to your problem, but your push
function does a copy that it doesn't need:
T* arr = new T[sz];
memcpy(arr, data, sz*sizeof(T));
This is simply not needed, instead do something like
T* oldData = data;
data = new T[sz + 1];
// Copy from old array to new
std::copy(oldData, oldData + sz, data);
delete[] oldData;
Upvotes: 2