Reputation: 1917
I'm trying to use xgboost on python. Here is my code. xgb.train
works but I get an error with xgb.cv
, although it seems I used it the correct way.
The following works for me:
###### XGBOOST ######
import datetime
startTime = datetime.datetime.now()
import xgboost as xgb
data_train = np.array(traindata.drop('Category',axis=1))
labels_train = np.array(traindata['Category'].cat.codes)
data_valid = np.array(validdata.drop('Category',axis=1))
labels_valid = np.array(validdata['Category'].astype('category').cat.codes)
weights_train = np.ones(len(labels_train))
weights_valid = np.ones(len(labels_valid ))
dtrain = xgb.DMatrix( data_train, label=labels_train,weight = weights_train)
dvalid = xgb.DMatrix( data_valid , label=labels_valid ,weight = weights_valid )
param = {'bst:max_depth':5, 'bst:eta':0.05, # eta [default=0.3]
#'min_child_weight':1,'gamma':0,'subsample':1,'colsample_bytree':1,'scale_pos_weight':0, # default
# max_delta_step:0 # default
'min_child_weight':5,'scale_pos_weight':0, 'max_delta_step':2,
'subsample':0.8,'colsample_bytree':0.8,
'silent':1, 'objective':'multi:softprob' }
param['nthread'] = 4
param['eval_metric'] = 'mlogloss'
param['lambda'] = 2
param['num_class']=39
evallist = [(dtrain,'train'),(dvalid,'eval')] # if there is a validation set
# evallist = [(dtrain,'train')] # if there is no validation set
plst = param.items()
plst += [('ams@0','eval_metric')]
num_round = 100
bst = xgb.train( plst, dtrain, num_round, evallist,early_stopping_rounds=5 ) # early_stopping_rounds=10 # when there is a validation set
# bst.res=xgb.cv(plst,dtrain,num_round,nfold = 5,evallist,early_stopping_rounds=5)
bst.save_model('0001.model')
# dump model
bst.dump_model('dump.raw.txt')
# dump model with feature map
# bst.dump_model('dump.raw.txt','featmap.txt')
x = datetime.datetime.now() - startTime
print(x)
But if I change the line...
bst = xgb.train( plst, dtrain, num_round, evallist,early_stopping_rounds=5 )
...to this one...
bst.res = xgb.cv(plst,dtrain,num_round,nfold = 5,evallist,early_stopping_rounds=5)
...I get the following unexpected error:
File "", line 45 bst.res=xgb.cv(plst,dtrain,num_round,nfold = 5,evallist,early_stopping_rounds=5) SyntaxError: non-keyword arg after keyword arg
EDIT1: I tried changing the order of keywords as well:
bst.res = xgb.cv(plst,dtrain,num_round,evallist,nfold = 5,early_stopping_rounds=5)
...and I get the following error:
---------------------------------------------------------------------------
TypeError
Traceback (most recent call last) <ipython-input-49-36177ef64bab> in <module>()
43 # bst = xgb.train( plst, dtrain, num_round, evallist,early_stopping_rounds=5 ) # early_stopping_rounds=10 # when there is a validation set
44
---> 45 bst.res=xgb.cv(plst,dtrain,num_round,evallist,nfold =5 ,early_stopping_rounds=5)
46
47 bst.save_model('0001.model')
TypeError: cv() got multiple values for keyword argument 'nfold'
EDIT2
After all, there is no need in CV for a validation set.
there is no argument evals
in the signature of xgb.cv (although it is present for xgb.train
)
so I removed it and change the line to:
bst.res=xgb.cv(params=plst,dtrain=dtrain,num_boost_round=num_round,nfold = 5,early_stopping_rounds=5)
then i get this error
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/xgboost/training.pyc
in cv(params, dtrain, num_boost_round, nfold, metrics, obj, feval,
maximize, early_stopping_rounds, fpreproc, as_pandas, show_progress,
show_stdv, seed)
413 best_score_i = 0
414 results = []
--> 415 cvfolds = mknfold(dtrain, nfold, params, seed, metrics, fpreproc)
416 for i in range(num_boost_round):
417 for fold in cvfolds:
/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/xgboost/training.pyc
in mknfold(dall, nfold, param, seed, evals, fpreproc)
280 else:
281 tparam = param
--> 282 plst = list(tparam.items()) + [('eval_metric', itm) for itm in evals]
283 ret.append(CVPack(dtrain, dtest, plst))
284 return ret
AttributeError: 'list' object has no attribute 'items'
Upvotes: 2
Views: 5668
Reputation: 1095
Here is the signature of xgboost.cv
, copied from the documentation
xgboost.cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False,
folds=None, metrics=(), obj=None, feval=None, maximize=False,
early_stopping_rounds=None, fpreproc=None, as_pandas=True,
verbose_eval=None, show_stdv=True, seed=0, callbacks=None)
Notice that there are exactly two strictly positional parameters (params, dtrain
), and the parameter in the fourth position is nfold
.
Your call is:
xgb.cv(plst, dtrain, num_round, evallist, nfold=5, early_stopping_rounds=5)
When python parses a function call, it first matches all the arguments you passed positionally by position. So in your case, python matches like this
Formal Parameter <-- What You Passed In
params <-- plst
dtrain <-- dtrain
num_boost_round <-- num_round
nfold <-- evallist
Then python matches all the arguments you passed in as keywords by name. So in your case, python matches like this
Formal Parameter <-- What You Passed In
nfold <-- 5
early_stopping_rounds <-- 5
So you can see that the formal parameter nfold
gets assigned twice, which is what is generating this
TypeError: cv() got multiple values for keyword argument 'nfold'
Probably the easiest and clearest fix is to pass all your arguments as keywords. Generally it is a best practice to limit your positional arguments to a very small number, most programmers seem to aim for about two positional parameters, at most.
but im getting another error, i can't figure it out alas
Looks like you're passing a list where a dictionary is expected. Using the docs again, the first argument:
params (dict) – Booster params.
Should be a dictionary.
Upvotes: 9