Reputation: 3830
I am trying to detect micro-events in a long time series. For this purpose, I will train a LSTM network.
Data. Input for each time sample is 11 different features somewhat normalized to fit 0-1. Output will be either one of two classes.
Batching. Due to huge class imbalance I have extracted the data in batches of each 60 time samples, of which at least 5 will always be class 1, and the rest class to. In this way the class imbalance is reduced from 150:1 to around 12:1 I have then randomized the order of all my batches.
Model. I am attempting to train an LSTM, with initial configuration of 3 different cells with 5 delay steps. I expect the micro events to arrive in sequences of at least 3 time steps.
Problem: When I try to train the network it will quickly converge towards saying that EVERYTHING belongs to the majority class. When I implement a weighted loss function, at some certain threshold it will change to saying that EVERYTHING belongs to the minority class. I suspect (without being expert) that there is no learning in my LSTM cells, or that my configuration is off?
Below is the code for my implementation. I am hoping that someone can tell me
ar_model.py
import numpy as np
import tensorflow as tf
from tensorflow.models.rnn import rnn
import ar_config
config = ar_config.get_config()
class ARModel(object):
def __init__(self, is_training=False, config=None):
# Config
if config is None:
config = ar_config.get_config()
# Placeholders
self._features = tf.placeholder(tf.float32, [None, config.num_features], name='ModelInput')
self._targets = tf.placeholder(tf.float32, [None, config.num_classes], name='ModelOutput')
# Hidden layer
with tf.variable_scope('lstm') as scope:
lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(config.num_hidden, forget_bias=0.0)
cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * config.num_delays)
self._initial_state = cell.zero_state(config.batch_size, dtype=tf.float32)
outputs, state = rnn.rnn(cell, [self._features], dtype=tf.float32)
# Output layer
output = outputs[-1]
softmax_w = tf.get_variable('softmax_w', [config.num_hidden, config.num_classes], tf.float32)
softmax_b = tf.get_variable('softmax_b', [config.num_classes], tf.float32)
logits = tf.matmul(output, softmax_w) + softmax_b
# Evaluate
ratio = (60.00 / 5.00)
class_weights = tf.constant([ratio, 1 - ratio])
weighted_logits = tf.mul(logits, class_weights)
loss = tf.nn.softmax_cross_entropy_with_logits(weighted_logits, self._targets)
self._cost = cost = tf.reduce_mean(loss)
self._predict = tf.argmax(tf.nn.softmax(logits), 1)
self._correct = tf.equal(tf.argmax(logits, 1), tf.argmax(self._targets, 1))
self._accuracy = tf.reduce_mean(tf.cast(self._correct, tf.float32))
self._final_state = state
if not is_training:
return
# Optimize
optimizer = tf.train.AdamOptimizer()
self._train_op = optimizer.minimize(cost)
@property
def features(self):
return self._features
@property
def targets(self):
return self._targets
@property
def cost(self):
return self._cost
@property
def accuracy(self):
return self._accuracy
@property
def train_op(self):
return self._train_op
@property
def predict(self):
return self._predict
@property
def initial_state(self):
return self._initial_state
@property
def final_state(self):
return self._final_state
ar_train.py
import os
from datetime import datetime
import numpy as np
import tensorflow as tf
from tensorflow.python.platform import gfile
import ar_network
import ar_config
import ar_reader
config = ar_config.get_config()
def main(argv=None):
if gfile.Exists(config.train_dir):
gfile.DeleteRecursively(config.train_dir)
gfile.MakeDirs(config.train_dir)
train()
def train():
train_data = ar_reader.ArousalData(config.train_data, num_steps=config.max_steps)
test_data = ar_reader.ArousalData(config.test_data, num_steps=config.max_steps)
with tf.Graph().as_default(), tf.Session() as session, tf.device('/cpu:0'):
initializer = tf.random_uniform_initializer(minval=-0.1, maxval=0.1)
with tf.variable_scope('model', reuse=False, initializer=initializer):
m = ar_network.ARModel(is_training=True)
s = tf.train.Saver(tf.all_variables())
tf.initialize_all_variables().run()
for batch_input, batch_target in train_data:
step = train_data.iter_steps
dict = {
m.features: batch_input,
m.targets: batch_target
}
session.run(m.train_op, feed_dict=dict)
state, cost, accuracy = session.run([m.final_state, m.cost, m.accuracy], feed_dict=dict)
if not step % 10:
test_input, test_target = test_data.next()
test_accuracy = session.run(m.accuracy, feed_dict={
m.features: test_input,
m.targets: test_target
})
now = datetime.now().time()
print ('%s | Iter %4d | Loss= %.5f | Train= %.5f | Test= %.3f' % (now, step, cost, accuracy, test_accuracy))
if not step % 1000:
destination = os.path.join(config.train_dir, 'ar_model.ckpt')
s.save(session, destination)
if __name__ == '__main__':
tf.app.run()
ar_config.py
class Config(object):
# Directories
train_dir = '...'
ckpt_dir = '...'
train_data = '...'
test_data = '...'
# Data
num_features = 13
num_classes = 2
batch_size = 60
# Model
num_hidden = 3
num_delays = 5
# Training
max_steps = 100000
def get_config():
return Config()
UPDATED ARCHITECTURE:
# Placeholders
self._features = tf.placeholder(tf.float32, [None, config.num_features, config.num_delays], name='ModelInput')
self._targets = tf.placeholder(tf.float32, [None, config.num_output], name='ModelOutput')
# Weights
weights = {
'hidden': tf.get_variable('w_hidden', [config.num_features, config.num_hidden], tf.float32),
'out': tf.get_variable('w_out', [config.num_hidden, config.num_classes], tf.float32)
}
biases = {
'hidden': tf.get_variable('b_hidden', [config.num_hidden], tf.float32),
'out': tf.get_variable('b_out', [config.num_classes], tf.float32)
}
#Layer in
with tf.variable_scope('input_hidden') as scope:
inputs = self._features
inputs = tf.transpose(inputs, perm=[2, 0, 1]) # (BatchSize,NumFeatures,TimeSteps) -> (TimeSteps,BatchSize,NumFeatures)
inputs = tf.reshape(inputs, shape=[-1, config.num_features]) # (TimeSteps,BatchSize,NumFeatures -> (TimeSteps*BatchSize,NumFeatures)
inputs = tf.add(tf.matmul(inputs, weights['hidden']), biases['hidden'])
#Layer hidden
with tf.variable_scope('hidden_hidden') as scope:
inputs = tf.split(0, config.num_delays, inputs) # -> n_steps * (batchsize, features)
cell = tf.nn.rnn_cell.BasicLSTMCell(config.num_hidden, forget_bias=0.0)
self._initial_state = cell.zero_state(config.batch_size, dtype=tf.float32)
outputs, state = rnn.rnn(cell, inputs, dtype=tf.float32)
#Layer out
with tf.variable_scope('hidden_output') as scope:
output = outputs[-1]
logits = tf.add(tf.matmul(output, weights['out']), biases['out'])
Upvotes: 1
Views: 5355
Reputation: 25572
Gunnar has already made lots of good suggestions. A few more small things worth paying attention to in general for this sort of architecture:
Concretely, how long are the sequences you are passing into the network? You say you have a 30k-long time sequence.. I assume you are passing in subsections / samples of this sequence?
Upvotes: 1
Reputation: 2817
I am not sure your "weighted loss" does what you want it to do:
ratio = (60.00 / 5.00)
class_weights = tf.constant([ratio, 1 - ratio])
weighted_logits = tf.mul(logits, class_weights)
this is applied before calculating the loss function (further I think you wanted an element-wise multiplication as well? also your ratio is above 1 which makes the second part negative?) so it forces your predictions to behave in a certain way before applying the softmax.
If you want weighted loss you should apply this after
loss = tf.nn.softmax_cross_entropy_with_logits(weighted_logits, self._targets)
with some element-wise multiplication of your weights.
loss = loss * weights
Where your weights have a shape like [2,]
However, I would not recommend you to use weighted losses. Perhaps try increasing the ratio even further than 1:6.
As far as I can read, you are using 5 stacked LSTMs with 3 hidden units per layer?
Try removing the multi rnn and just use a single LSTM/GRU (maybe even just a vanilla RNN) and jack the hidden units up to ~100-1000.
Often when you are facing problems with an odd behaving network, it can be a good idea to:
Literally print the shapes and values of every tensor in your model, use sess to fetch it and then print it. Your input data, the first hidden representation, your predictions, your losses etc.
You can also use tensorflows tf.Print() x_tensor = tf.Print(x_tensor, [tf.shape(x_tensor)])
Using tensorboard summaries on your gradients, accuracy metrics and histograms will reveal patterns in your data that might explain certain behavior, such as what lead to exploding weights. Like maybe your forget bias goes to infinity or your not tracking gradient through a certain layer etc.
How large is your dataset?
How long are your sequences?
Are the 13 features categorical or continuous? You should not normalize categorical variables or represent them as integers, instead you should use one-hot encoding.
Upvotes: 3