techydesigner
techydesigner

Reputation: 1691

Comparing hashes to test for collisions

I wish to compare hashes to check for collisions (Yes, I know it is time consuming, but never mind that). In checking for collisions, hashes need to be compared. Is the best method to have a single hash in a variable to compare against or to have a list of all hashes previously generated and compare the latest hash to each item in the list.

I would prefer the first option because it is much faster, but is there a recommended method? Are you less likely to find a collision by using the first method?

Upvotes: 0

Views: 567

Answers (1)

Tony Delroy
Tony Delroy

Reputation: 106236

Is the best method to have a single hash in a variable to compare against or to have a list of all hashes previously generated and compare the latest hash to each item in the list.

Neither.

I would prefer the first option because it is much faster, but is there a recommended method?

I don't understand why you think the first method might work, but then you haven't fully explained your situation. Still, if you want to detect hash values that repeat, you do indeed need to keep track of already-seen hash values: to do that you don't want to search linearly though a list, and should use a set container to store seen hashes; a hash table - as suggested in a comment by gnasher729 a few hours back - would give O(1) performance e.g. in C++ in your hashes are 64 bit, std::unordered_set<uint64_t>), or a balance binary tree for O(logN) performance (e.g. C++ std::set<uint64_t>).

Are you less likely to find a collision by using the first method?

You're very likely to miss collisions.


All that said, you may want to reexamine your premise. The chance of a good (cryptographic quality) hash function producing collisions closely approaches the odds described by the "birthday paradox". As a rule of thumb, if you have 2^N distinct values to hash you're statistically unlikely to see collisions if your hashes are comfortably more than 2*N bits wide: if you allow enough "comfort", you're more likely to be hit on the noggin by a meteor than have your program see a collision. You mentioned MD5 so I'd expect 128 bits: unless you're storing order-of a quadrillion values or more (literally), it's pretty safe to ignore the potential for collisions.

Do note one important use of hash values where collisions happen more often for a different reason, and that's in hash tables, where even non-colliding hash values may collide at the same bucket index after they're "wrapped" - often a la h % N when N is the number of buckets. In general, it's impractical to ignore the potential for collisions in a hash table, and very unwise to try.

Upvotes: 2

Related Questions