Reputation: 48
I would like to automatically produce linear regressions for a data frame for each category separately.
My data frame includes one column with time categories, one column (slope$Abs) as the dependent variable, several columns, which should be used as the independent variable.
head(slope)
timepoint Abs In1 In2 In3 Out1 Out2 Out3 ...
1: t0 275.0 2.169214 2.169214 2.169214 2.069684 2.069684 2.069684
2: t0 275.5 2.163937 2.163937 2.163937 2.063853 2.063853 2.063853
3: t0 276.0 2.153298 2.158632 2.153298 2.052088 2.052088 2.057988
4: ...
All in all for each timepoint I have 40 variables, and I want to end up with a linear regression for each combination. Such as In1~Abs[t0], In1~Abs[t1] and so on for each column. Of course I can do this manually, but I guess there must be a more elegant way to do the work.
I did my research and found out that dlply()
might be the function I'm looking for. However, my attempt results in an error.
So I somehow tried to combine the answers from previous questions I have found: On individual variables per column and on subsets per category
I came up with a function like this:
lm.fun <- function(x) {summary(lm(x ~ slope$Abs, data=slope))}
lm.list <- dlply(.data=slope, .variables=slope$timepoint, .fun=lm.fun )
But I get the following error:
Error in eval.quoted(.variables, data) :
envir must be either NULL, a list, or an environment.
Hope someone can help me out.
Thanks a lot in advance!
Upvotes: 1
Views: 747
Reputation: 48
I have solved the issue with a simpler approach, so I wanted to update the answer.
To make life easier I converted the data frame structure so that all columns are converted into rows with the melt()
function of the reshape
package.
melt(slope, id = c("Abs", "timepoint"), variable_name = "Sites")
The output's column name is by default "value".
Then create one column that adds both predictors with paste()
.
slope$FullTreat <- paste(slope$Sites,slope$timepoint, sep="_")
Run a function through the dataset to create separate models for each treatment combination.
models <- dlply(slope, ~ FullTreat, function(df) {
lm(value ~ Abs, data = df)
})
To extract the coefficents simply run
coefs <- ldply(models, coef)
Then split the FullTreat column into separate columns again with colsplit()
also from reshape
. Plus, add the Intercept and slope to the new data frame:
coefs <- cbind(colsplit(coefs$FullTreat, split="_",
c("Sites","Timepoint")), coefs[,2:3])
I haven't worked on a function that plots all the regressions from the models, but I guess this is feasible with the ldply()
function.
Upvotes: 0
Reputation: 3994
The dplyr
package in R does not do well in accepting formulas in the form of y~x
into its functions based on my research. So the other alternative is to calculate it someone manually. Now let me first inform you that slope = cor(x,y)*sd(y)/sd(x)
(reference found here: http://faculty.cas.usf.edu/mbrannick/regression/regbas.html) and that the intercept = mean(y) - slope*mean(x)
. Simple linear regression requires that we use the centroid as our point of reference when finding our intercept because it is an unbiased estimator. Using a single point will only get you the intercept of that individual point and not the overall intercept.
Now for this explanation, I will be using the mtcars
data set. I only wanted a subset of the data so I am using variables c('mpg', 'cyl', 'disp', 'hp', 'drat', 'wt', 'qsec')
to basically mimic your dataset. In my example, my grouping variable is 'cyl'
, which is the equivalent of your 'timepoint' variable. The variable 'mpg'
is the y-variable in this case, which is equivalent to 'Abs'
in your data.
Based on my explanation of slope and intercept above, it is clear that we need three tables/datasets: a correlation dataset for your y with respect to your x for each group, a standard deviation table for each variable and group, and a table of means for each group and each variable.
To get the correlation dataset, we want to group by 'cyl'
and calculate the correlation coefficients for , you should use:
df <- mtcars[c('mpg', 'cyl', 'disp', 'hp', 'drat', 'wt', 'qsec')]
corrs <- data.frame(k1 %>% group_by(cyl) %>% do(head(data.frame(cor(.[,c(1,3:7)])), n = 1)))
Because of the way my dataset is structured, the second variable (df[ ,2])
is 'cyl'
. For you, you should use
do(head(data.frame(cor(.[,c(2:40)])), n = 1)))
since your first column is the grouping variable and it is not numeric. Essentially, you want to go across all numeric variables. Not using head
will produce a correlation matrix, but since you are interested in finding the slope independent of each other x-variable, you only need the row that has the correlation coefficient of your y-variable equal to 1 (r_yy = 1
).
To get standard deviation and means for each group, each variable, use
sds <- data.frame(k1 %>% group_by(cyl) %>% summarise_each(funs(sd)))
means <- data.frame(k1 %>% group_by(cyl) %>% summarise_each(funs(mean)))
Your group names will be the first column, so make sure to rename your rows for each dataset corrs
, sds
, and means
and delete column 1.
rownames(corrs) <- rownames(means) <- rownames(sds) <- corrs[ ,1]
corrs <- corrs[ ,-1]; sds <- sds[ ,-1]; means <- means[ ,-1]
Now we need to calculate the sd(y)/sd(x)
. The best way I have done this, and seen it done is using an apply
affiliated function.
sdst <- data.frame(t(apply(sds, 1, function(X) X[1]/X)))
I use X[1]
because the first variable in sds
is my y-variable. The first variable after you have deleted timepoint
is Abs
which is your y-variable. So use that.
Now the rest is pretty straight forward. Since everything is saved as a data frame, to find slope, all it you need to do is
slopes <- sdst*corrs
inter <- slopes*means
intercept <- data.frame(t(apply(inter, 1, function(x) x[1]-x)))
Again here, since our y-variable is in the first column, we use x[1]
. To check if all is well, your slopes for your y-variable should be 1 and the intercept should be 0.
Upvotes: 1