Reputation: 35
I'm trying to train a feed forward neural network for the first time in torch. Here's my dataset: http://ocw.mit.edu/courses/sloan-school-of-management/15-097-prediction-machine-learning-and-statistics-spring-2012/datasets/transfusion.csv
Here's the code (based, http://mdtux89.github.io/2015/12/11/torch-tutorial.html):
require 'nn'
mlp = nn.Sequential()
inputSize = 4
hiddenLayer1Size = 4
hiddenLayer2Size = 4
mlp:add(nn.Linear(inputSize,hiddenLayer1Size)) -- row, coulm
mlp:add(nn.Tanh())
mlp:add(nn.Linear(hiddenLayer1Size,hiddenLayer2Size))
mlp:add(nn.Tanh())
nclasses = 1
mlp:add(nn.Linear(hiddenLayer2Size,nclasses))
mlp:add(nn.LogSoftMax())
output = mlp:forward(torch.rand(1,4))
print(output)
-- TRAINING using inbuilt stochastic gradient descent, 2 params: network, criterian fun. --
LRate = 0.1
criterion = nn.ClassNLLCriterion()
trainer = nn.StochasticGradient(mlp, criterion)
trainer.learningRate = LRate
function string:splitAtCommas()
local sep, values = ",", {}
local pattern = string.format("([^%s]+)", sep)
self:gsub(pattern, function(c) values[#values+1] = c end)
return values
end
function loadData(dataFile)
local dataset,i = {},0
for line in io.lines(dataFile) do
local values = line:splitAtCommas()
local y = torch.Tensor(1)
y[1] = values[#values] -- the target class is the last number in the line
values[#values] = nil
local x = torch.Tensor(values) -- the input data is all the other numbers
dataset[i] = {x, y}
i = i + 1
end
function dataset:size() return (i - 1) end -- the requirement mentioned
return dataset
end
dataset = loadData("transfusion.csv")
trainer:train(dataset)
Here's the error report:
# StochasticGradient: training
/Users/drdre/torch/install/share/lua/5.1/nn/THNN.lua:109: Assertion `cur_target >= 0 && cur_target < n_classes' failed. at /Users/drdre/torch/extra/nn/lib/THNN/generic/ClassNLLCriterion.c:38
stack traceback:
[C]: in function 'v'
/Users/drdre/torch/install/share/lua/5.1/nn/THNN.lua:109: in function 'ClassNLLCriterion_updateOutput'
...dre/torch/install/share/lua/5.1/nn/ClassNLLCriterion.lua:41: in function 'forward'
...re/torch/install/share/lua/5.1/nn/StochasticGradient.lua:35: in function 'f'
[string "local f = function() return trainer:train(dat..."]:1: in main chunk
[C]: in function 'xpcall'
/Users/drdre/torch/install/share/lua/5.1/itorch/main.lua:209: in function </Users/drdre/torch/install/share/lua/5.1/itorch/main.lua:173>
/Users/drdre/torch/install/share/lua/5.1/lzmq/poller.lua:75: in function 'poll'
/Users/drdre/torch/install/share/lua/5.1/lzmq/impl/loop.lua:307: in function 'poll'
/Users/drdre/torch/install/share/lua/5.1/lzmq/impl/loop.lua:325: in function 'sleep_ex'
/Users/drdre/torch/install/share/lua/5.1/lzmq/impl/loop.lua:370: in function 'start'
/Users/drdre/torch/install/share/lua/5.1/itorch/main.lua:381: in main chunk
[C]: in function 'require'
(command line):1: in main chunk
[C]: at 0x0105e4cd10
Upvotes: 0
Views: 647