Reputation: 97
import urllib.request
import re
import csv
import pandas as pd
from bs4 import BeautifulSoup
stocklist = ['aapl','goog','fb','amzn','COP']
for stocklist in stocklist:
optionsUrl = urllib.request.urlopen('http://finance.yahoo.com/q?s='+stocklist).read()
soup = BeautifulSoup(optionsUrl)
stocksymbol = ['Symbol:',''+stocklist+'']
optionsTable = [stocksymbol]+[
[x.text for x in y.parent.contents]
for y in soup.findAll('td', attrs={'class': 'yfnc_tabledata1','rtq_table': ''})
]
print(optionsTable)
my_df = pd.DataFrame(optionsTable).T
my_df.to_csv('test.csv', index=False, header=False)
I have this piece of code. Some one suggested me to use pandas. I was able to write the data from a list into the CSV file. But the CSV file is having data only for COP but not for other stocks(the csv file has only one row of data, I am assuming it is overwriting). Can some one please tell me what i am missing or fix this code? the print(optionsTable) prints 4 rows though..
Here is the output:
[['Symbol:', 'aapl'], ['Prev Close:', '99.65'], ['Open:', '98.51'], ['Bid:', '98.95 x 1700'], ['Ask:', '98.96 x 1200'], ['1y Target Est:', '124.90'], ['Beta:', '1.48679'], ['Earnings Date:', 'Jul 19 - Jul 25 (Est.)'], ["Day's Range:", '98.48 - 99.35'], ['52wk Range:', '89.47 - 132.97'], ['Volume:', '28,454,663'], ['Avg Vol (3m):', '38,261,900'], ['Market Cap:', '541.57B'], ['P/E (ttm):', '11.01'], ['EPS (ttm):', '8.98'], ['Div & Yield:', '2.28 (2.30%) '], ['Forward P/E (1 yr):', '10.86'], ['P/S (ttm):', '2.40'], ['Ex-Dividend Date:', '05-May-16'], ['Annual EPS Est\n (Sep-16)\n :', '8.28'], ['Quarterly EPS Est\n (Jun-16)\n :', '1.39'], ['Mean Recommendation*:', '1.8'], ['PEG Ratio (5 yr expected):', '1.30']]
[['Symbol:', 'goog'], ['Prev Close:', '728.58'], ['Open:', '719.47'], ['Bid:', '717.60 x 400'], ['Ask:', '717.96 x 100'], ['1y Target Est:', '924.83'], ['Beta:', '1.032'], ['Next Earnings Date:', 'N/A'], ["Day's Range:", '716.43 - 725.86'], ['52wk Range:', '515.18 - 789.87'], ['Volume:', '1,050,710'], ['Avg Vol (3m):', '1,781,050'], ['Market Cap:', '493.43B'], ['P/E (ttm):', '29.25'], ['EPS (ttm):', '24.58'], ['Div & Yield:', 'N/A (N/A) '], ['Forward P/E (1 yr):', 'N/A'], ['P/S (ttm):', '6.41'], ['Ex-Dividend Date:', 'N/A'], ['Annual EPS Est\n (Dec-16)\n :', 'N/A'], ['Quarterly EPS Est\n (Jun-16)\n :', 'N/A'], ['Mean Recommendation*:', '1.8'], ['PEG Ratio (5 yr expected):', 'N/A']]
[['Symbol:', 'fb'], ['Prev Close:', '118.56'], ['Open:', '117.52'], ['Bid:', '116.39 x 800'], ['Ask:', '116.40 x 500'], ['1y Target Est:', '142.87'], ['Beta:', '0.840485'], ['Earnings Date:', 'Jul 27 - Aug 1 (Est.)'], ["Day's Range:", '116.26 - 118.11'], ['52wk Range:', '72.00 - 121.08'], ['Volume:', '17,257,639'], ['Avg Vol (3m):', '25,746,700'], ['Market Cap:', '333.25B'], ['P/E (ttm):', '71.26'], ['EPS (ttm):', '1.64'], ['Div & Yield:', 'N/A (N/A) '], ['Forward P/E (1 yr):', '25.25'], ['P/S (ttm):', '17.16'], ['Ex-Dividend Date:', 'N/A'], ['Annual EPS Est\n (Dec-16)\n :', 'N/A'], ['Quarterly EPS Est\n (Jun-16)\n :', 'N/A'], ['Mean Recommendation*:', '1.7'], ['PEG Ratio (5 yr expected):', 'N/A']]
[['Symbol:', 'amzn'], ['Prev Close:', '727.65'], ['Open:', '722.35'], ['Bid:', '716.25 x 500'], ['Ask:', '716.50 x 100'], ['1y Target Est:', '800.92'], ['Beta:', '1.6465'], ['Earnings Date:', 'Jul 21 - Jul 25 (Est.)'], ["Day's Range:", '714.21 - 724.98'], ['52wk Range:', '422.64 - 731.50'], ['Volume:', '3,161,899'], ['Avg Vol (3m):', '3,948,360'], ['Market Cap:', '338.47B'], ['P/E (ttm):', '295.70'], ['EPS (ttm):', '2.43'], ['Div & Yield:', 'N/A (N/A) '], ['Forward P/E (1 yr):', '72.29'], ['P/S (ttm):', '3.03'], ['Ex-Dividend Date:', 'N/A'], ['Annual EPS Est\n (Dec-16)\n :', '5.38'], ['Quarterly EPS Est\n (Jun-16)\n :', '1.10'], ['Mean Recommendation*:', '1.8'], ['PEG Ratio (5 yr expected):', '2.43']]
[['Symbol:', 'COP'], ['Prev Close:', '46.57'], ['Open:', '45.90'], ['Bid:', '44.47 x 1300'], ['Ask:', '44.48 x 2300'], ['1y Target Est:', '51.23'], ['Beta:', '1.42252'], ['Earnings Date:', 'Jul 28 - Aug 1 (Est.)'], ["Day's Range:", '44.26 - 46.12'], ['52wk Range:', '31.05 - 64.13'], ['Volume:', '8,217,057'], ['Avg Vol (3m):', '8,947,330'], ['Market Cap:', '55.11B'], ['P/E (ttm):', 'N/A'], ['EPS (ttm):', '-4.98'], ['Div & Yield:', '1.98 (4.16%) '], ['Forward P/E (1 yr):', '143.48'], ['P/S (ttm):', '2.11'], ['Ex-Dividend Date:', '18-May-16'], ['Annual EPS Est\n (Dec-16)\n :', '-2.26'], ['Quarterly EPS Est\n (Jun-16)\n :', '-0.67'], ['Mean Recommendation*:', '2.5'], ['PEG Ratio (5 yr expected):', '0.37']]
Upvotes: 0
Views: 733
Reputation: 210852
I would recommend you to use pandas-datareader, which is designed for the things you are going to do.
Here is a small demo:
from datetime import datetime
import pandas_datareader.data as wb
stocklist = ['AAPL','GOOG','FB','AMZN','COP']
start = datetime(2016,6,8)
end = datetime(2016,6,11)
p = wb.DataReader(stocklist, 'yahoo',start,end)
p
- is a pandas panel, with which we can do funny things:
let's see what do we have in our panel
In [388]: p.axes
Out[388]:
[Index(['Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close'], dtype='object'),
DatetimeIndex(['2016-06-08', '2016-06-09', '2016-06-10'], dtype='datetime64[ns]', name='Date', freq='D'),
Index(['AAPL', 'AMZN', 'COP', 'FB', 'GOOG'], dtype='object')]
In [389]: p.keys()
Out[389]: Index(['Open', 'High', 'Low', 'Close', 'Volume', 'Adj Close'], dtype='object')
selecting data
In [390]: p['Adj Close']
Out[390]:
AAPL AMZN COP FB GOOG
Date
2016-06-08 98.940002 726.640015 47.490002 118.389999 728.280029
2016-06-09 99.650002 727.650024 46.570000 118.559998 728.580017
2016-06-10 98.830002 717.909973 44.509998 116.620003 719.409973
In [391]: p['Volume']
Out[391]:
AAPL AMZN COP FB GOOG
Date
2016-06-08 20812700.0 2200100.0 9596700.0 14368700.0 1582100.0
2016-06-09 26419600.0 2163100.0 5389300.0 13823400.0 985900.0
2016-06-10 31462100.0 3409500.0 8941200.0 18412700.0 1206000.0
In [394]: p[:,:,'AAPL']
Out[394]:
Open High Low Close Volume Adj Close
Date
2016-06-08 99.019997 99.559998 98.680000 98.940002 20812700.0 98.940002
2016-06-09 98.500000 99.989998 98.459999 99.650002 26419600.0 99.650002
2016-06-10 98.529999 99.349998 98.480003 98.830002 31462100.0 98.830002
In [395]: p[:,'2016-06-10']
Out[395]:
Open High Low Close Volume Adj Close
AAPL 98.529999 99.349998 98.480003 98.830002 31462100.0 98.830002
AMZN 722.349976 724.979980 714.210022 717.909973 3409500.0 717.909973
COP 45.900002 46.119999 44.259998 44.509998 8941200.0 44.509998
FB 117.540001 118.110001 116.260002 116.620003 18412700.0 116.620003
GOOG 719.469971 725.890015 716.429993 719.409973 1206000.0 719.409973
Upvotes: 0
Reputation: 78554
You're overwriting your csv everytime you loop. You should collect all the data and write them to the csv after looping:
stocklist = ['aapl','goog','fb','amzn','COP']
columns = []
data = []
for s in stocklist:
optionsUrl = urllib.request.urlopen('http://finance.yahoo.com/q?s='+s).read()
soup = BeautifulSoup(optionsUrl, "html.parser")
stocksymbol = ['Symbol:', s]
optionsTable = [stocksymbol]+[
[x.text for x in y.parent.contents]
for y in soup.findAll('td', attrs={'class': 'yfnc_tabledata1','rtq_table': ''})
]
if not columns:
columns = [o[0] for o in optionsTable]
data.append(o[1] for o in optionsTable)
# create DataFrame from data
df = pd.DataFrame(data, columns=columns)
df.to_csv('test.csv', index=False)
Upvotes: 2
Reputation: 1442
You can append to a file by doing
with open('test.csv', 'a') as f:
my_df.to_csv(f, header=False)
this
Upvotes: 0