Reputation: 109
I'm new to Java and still trying to wrap my head around recursion.The function below returns true at the very first intersection between the two sorted lists list x and list y.
public static boolean checkIntersection(List<Integer> x, List<Integer> y) {
int i = 0;
int j = 0;
while (i < x.size() && j < y.size()) {
if (x.get(i).equals(y.get(j))) {
return true;
} else if (x.get(i) < y.get(j)) {
i++;
} else {
j++;
}
}
return false;
}
Now I've been trying to implement it using recursion instead, and I know that there should be a base case which is an empty list in this case and then try to reduce the list by excluding one element at a time and feed it back to the same recursive function, but I can't work out how to check for intersection as I pass the rest of the list over and over.
public static boolean recursiveChecking(List<Integer> x,List<Integer> y) {
if(x.size() == 0){
return false;
}
else {
return recursiveChecking(x.subList(1, x.size()-1), y);
}
}
Any help would be highly appreciated. Thank you.
Upvotes: 1
Views: 120
Reputation: 726509
General approach to making something recursive is to think of two things:
false
) or the initial elements of both non-empty lists are the same (the result would be true
)ListIterator<Integer>
in place of List<Integer>
for a non-destructive solution.*Of course in this case you need to take care of either adding your numbers back after the call, or make a copy of two lists before starting the recursive chain.
Upvotes: 5
Reputation: 3036
As the lists are ordered, your recursion should remove the first element of the list with the smaller first value. Then you have to return true, if both lists start with the same number and false if any of the lists is empty. Otherwise you keep removing elements. This would look something like this (This code is untested):
public static boolean recursiveChecking(List<Integer> x,List<Integer> y) {
if(x.size() == 0 || y.size() == 0){
return false;
} else if (x.get(0).equals(y.get(0))) {
return true;
} else {
if (x.get(0) < y.get(0)) {
return recursiveChecking(x.subList(1, x.size()-1), y);
} else {
return recursiveChecking(x, y.subList(1, y.size()-1));
}
}
}
Upvotes: 4