Reputation: 9081
I am working on a Windows 7 8gb RAM.
This is the vectorizer I am using to vectorize a free text column in my 52MB training dataset
vec = CountVectorizer(analyzer='word',stop_words='english',decode_error='ignore',binary=True)
I want to calculate 5 nearest neighbours with this dataset for an 18MB test set.
nbrs = NearestNeighbors(n_neighbors=5).fit(vec.transform(data['clean_sum']))
vectors = vec.transform(data_test['clean_sum'])
distances,indices = nbrs.kneighbors(vectors)
This is the stack trace -
Traceback (most recent call last):
File "cr_nearness.py", line 224, in <module>
distances,indices = nbrs.kneighbors(vectors)
File "C:\Anaconda2\lib\site-packages\sklearn\neighbors\base.py", line 371,
kneighbors
n_jobs=n_jobs, squared=True)
File "C:\Anaconda2\lib\site-packages\sklearn\metrics\pairwise.py", line 12
in pairwise_distances
return _parallel_pairwise(X, Y, func, n_jobs, **kwds)
File "C:\Anaconda2\lib\site-packages\sklearn\metrics\pairwise.py", line 10
in _parallel_pairwise
return func(X, Y, **kwds)
File "C:\Anaconda2\lib\site-packages\sklearn\metrics\pairwise.py", line 23
n euclidean_distances
distances = safe_sparse_dot(X, Y.T, dense_output=True)
File "C:\Anaconda2\lib\site-packages\sklearn\utils\extmath.py", line 181,
afe_sparse_dot
ret = ret.toarray()
File "C:\Anaconda2\lib\site-packages\scipy\sparse\compressed.py", line 940
toarray
return self.tocoo(copy=False).toarray(order=order, out=out)
File "C:\Anaconda2\lib\site-packages\scipy\sparse\coo.py", line 250, in to
y
B = self._process_toarray_args(order, out)
File "C:\Anaconda2\lib\site-packages\scipy\sparse\base.py", line 817, in _
ess_toarray_args
return np.zeros(self.shape, dtype=self.dtype, order=order)
MemoryError
Any ideas?
Upvotes: 5
Views: 3608
Reputation: 43
Use KNN with KD TREE
model = KNeighborsClassifier(n_neighbors=5,algorithm='kd_tree').fit(X_train, Y_train)
the model by default is algorithm='brute'. brute false take too much memory. I think for your model it should be look like this
nbrs = NearestNeighbors(n_neighbors=5,algorithm='kd_tree').fit(vec.transform(data['clean_sum']))
Upvotes: 3