Reputation: 1082
I have fitted a TBATS
model around my seasonal time-series data and used the forecast
package to obtain predictions. My R code is:
library("forecast")
data = read.csv("data.csv")
season_info <- msts(data,seasonal.periods=c(24,168))
model <- tbats(season_info)
forecasted <- forecast.tbats(best_model,h=24,level=90)
forecasted
Now, I have a variable called 'forecasted' that outputs as such:
> forecasted
Point Forecast Lo 90 Hi 90
6.940476 5080.641 4734.760 5426.523
6.946429 5024.803 4550.111 5499.496
6.952381 4697.625 4156.516 5238.733
6.958333 4419.105 3832.765 5005.446
6.964286 4262.782 3643.528 4882.037
6.970238 4187.629 3543.062 4832.196
6.976190 4349.196 3684.444 5013.947
6.982143 4484.108 3802.574 5165.642
6.988095 4247.858 3551.955 4943.761
6.994048 3851.379 3142.831 4559.927
7.000000 3575.951 2855.962 4295.941
7.005952 3494.943 2764.438 4225.449
7.011905 3501.354 2760.968 4241.739
7.017857 3445.563 2695.781 4195.345
I need to gather the forecasted values from the column 'Forecast' and store it in a CSV file. I tried to read the page for the TBATS and 'forecast' method online, but they do not say how a particular column of forecasted values could be extracted, ignoring the other columns such as 'Hi' 'Lo' and 'Point'.
I'm looking for this output in my CSV:
hour,forecasted_value
0,5080.641
1,5024.803
2,4697.625
...
Upvotes: 1
Views: 3990
Reputation: 79
use mean function for getting your Point Forecast
library("forecast")
data = read.csv("data.csv")
season_info <- msts(data,seasonal.periods=c(24,168))
model <- tbats(season_info)
forecasted <- (forecast.tbats(best_model,h=24,level=90))$mean
or
forecasted$mean
Upvotes: 0
Reputation: 3878
You can obtain the output shown by using print()
:
library("forecast")
data = read.csv("data.csv")
season_info <- msts(data,seasonal.periods=c(24,168))
model <- tbats(season_info)
forecasted <- forecast.tbats(best_model,h=24,level=90)
dfForec <- print(forecasted)
this will give you the data.frame
, now you can pick out the columns you want, ie. dfForec[, 1]
for only the point-forecast, then use write.csv(dfForec[, 1, drop = FALSE], ...)
to write it to a flat file.
Upvotes: 2
Reputation: 28441
They are stored in three parts. You can look at the object structure with str(ret)
:
library(forecast)
fit <- tbats(USAccDeaths)
ret <- forecast(fit)
ret$upper # Upper interval
ret$lower # Lower interval
ret$mean # Point forecast
Upvotes: 3