Reputation: 198
I am trying to fill the gaps in a time series of ndvi images using spline.
I have created a raster stack with the ndvi images I have and some layers with only NA
for the timesteps that I don't have.
The raster stack is available as a Geotiff here: raster stack download
I have written the following function to interpolate the missing values:
f.int.spline <- function(x) { # x is a raster stack or brick
v=as.vector(x) # transform x in a vector for easier manipulation
z=which(v %in% NA) # find which pixel values are to be interpolated
# interpolation with spline
interp <- spline(x=c(1:NROW(v)), y = v,
xout = z, # missing values to be interpolated
method = "natural")
x[z] <-interp$y # including the missing values in the original vector
}
The function works if I use it with one pixel (e.g x[ 50, 200 ]
), but if I run it with calc(x, f.int.spline)
it returns a generic error:
> error in .calcTest(x[1:5], fun, na.rm, forcefun, forceapply) :
cannot use this function
If I run it using f.int.spline(x)
it returns an error related to memory usage:
> Error in as.vector(t((matrix(rep(i, rec2), nrow = rec2, byrow = TRUE)) + :
error in evaluating the argument 'x' in selecting a method for function 'as.vector': Error in t((matrix(rep(i, rec2), nrow = rec2, byrow = TRUE)) + add) :
error in evaluating the argument 'x' in selecting a method for function 't': Error: cannot allocate vector of size 4.9 Gb
1) Do you see any flaws or have any workarounds on how to make it work?
2) I can't understand exactly how the calc()
function works for raster stacks: Does it take the values of each pixel in all the layers?
3) as suggested by Jeffrey Evans I am also looking for other interpolation functions that are better suited for the job. Any idea ?
Upvotes: 2
Views: 1730
Reputation: 47146
First create a function that works on a vector, including on some corner cases (that may or may not be relevant to you)
f <- function(x) {
z <- which(is.na(x))
nz <- length(z)
nx <- length(x)
if (nz > 0 & nz < nx) {
x[z] <- spline(x=1:nx, y=x, xout=z, method="natural")$y
}
x
}
Test the function
f(c(1,2,3,NA,5,NA,7))
##[1] 1 2 3 4 5 6 7
f(c(NA,NA,5,NA,NA))
##[1] 5 5 5 5 5
f(rep(NA, 8))
##[1] NA NA NA NA NA NA NA NA
f(rep(1, 8))
##[1] 1 1 1 1 1 1 1 1
Then use calc
on a RasterStack or RasterBrick
Example data
r <- raster(ncols=5, nrows=5)
r1 <- setValues(r, runif(ncell(r)))
r2 <- setValues(r, runif(ncell(r)))
r3 <- setValues(r, runif(ncell(r)))
r4 <- setValues(r, runif(ncell(r)))
r5 <- setValues(r, NA)
r6 <- setValues(r, runif(ncell(r)))
r1[6:10] <- NA
r2[5:15] <- NA
r3[8:25] <- NA
s <- stack(r1,r2,r3,r4,r5,r6)
s[1:5] <- NA
Use the function
x <- calc(s, f)
Alternatively, you can use approxNA
x <- approxNA(s)
Upvotes: 1