Reputation: 387
I am having trouble understanding how to compare numbers by value vs by address. I have tried the following:
(setf number1 5)
(setf number2 number1)
(setf number3 5)
(setf list1 '(a b c d) )
(setf list2 list1)
(setf list3 '(a b c d) )
I then used the following predicate functions:
>(eq list1 list2) T
>(eq list1 list3) Nil
>(eq number1 number2) T
>(eq number1 number3) T
Why is it that with lists eq acts like it should (both pointers for list1 and list3 are different) yet for numbers it does not act like I think it should as number1 and number3 should have different addresses. Thus my question is why this doesn't act like I think it should and if there is a way to compare addresses of variables containing numbers vs values.
Upvotes: 0
Views: 337
Reputation: 139311
One of the problems is that testing it in one implementation in a specific setting does not tell you much. Implementations may behave differently when the ANSI Common Lisp specification allows it.
do not assume that two numbers of the same value are EQ
or not EQ
. This is unspecified in Common Lisp. Use EQL
or =
to compare numbers.
do not assume that two literal lists, looking similar in a printed representation, are EQ
or not EQ
. This is unspecified in Common Lisp for the general case.
For example:
A file with the following content:
(defvar *a* '(1 2 3))
(defvar *b* '(1 2 3))
If one now compiles and loads the file it is unspecified if (eq *a* *b*)
is T
or NIL
. Common Lisp allows an optimizing compiler to detect that the lists have the similar content and then will allocate only one list and both variables will be bound to the same list.
An implementation might even save space when not the whole lists are having similar content. For example in (a 1 2 3 4)
and (b 1 2 3 4)
a sublist (1 2 3 4)
could be shared.
For code with a lot of list data, this could help saving space both in code and memory. Other implementations might not be that sophisticated. In interactive use, it is unlikely that an implementation will try to save space like that.
In the Common Lisp standard quite a bit behavior is unspecified. It was expected that implementations with different goals might benefit from different approaches.
Upvotes: 2
Reputation: 85883
how to compare numbers by value vs by address.
While there's a sense in which can be applied, that's not really the model that Common Lisp provides. Reading about the built-in equality predicates can help clarify the way in which objects are stored in memory (implicitly)..
EQ is generally what checks the "same address", but that's not how it's specified, and that's not exactly what it does, either. It "returns true if its arguments are the same, identical object; otherwise, returns false."
What does it mean to be the same identical object? For things like cons-cells (from which lists are built), there's an object in memory somewhere, and eq checks whether two values are the same object. Note that eq could return true or false on primitives like numbers, since the implementation is free to make copies of them.
EQL is like eq, but it adds a few extra conditions for numbers and characters. Numbers of the same type and value are guaranteed to be eql, as are characters that represent the same character.
EQUAL and EQUALP are where things start to get more complex and you actually get something like element-wise comparison for lists, etc.
Why is it that with lists eq acts like it should (both pointers for list1 and list3 are different) yet for numbers it does not act like I think it should as number1 and number3 should have different addresses. Thus my question is why this doesn't act like I think it should and if there is a way to compare addresses of variables containing numbers vs values.
The examples in the documentation for eq show that (eq 3 3) (and thus, (let ((x 3) (y 3)) (eq x y)) can return true or false. The behavior you're observing now isn't the only possible one.
Also, note that in compiled code, constant values can be coalesced into one. That means that the compiler has the option of making the following return true:
(let ((x '(1 2 3))
(y '(1 2 3)))
(eq x y))
Upvotes: 5