Reputation: 85
As I am not very proficient in various optimization/tree algorithms, I am seeking help.
Problem Description:
Assume, a large sequence of sorted nodes is given with each node representing an integer value L. L is always getting bigger with each node and no nodes have the same L.
The goal now is to find the best combination of nodes, where the difference between the L-values of subsequent nodes is closest to a given integer value M(L) that changes over L.
Example:
So, in the beginning I would have L = 50 and M = 100. The next nodes have L = 70,140,159,240,310.
First, the value of 159 seems to be closest to L+M = 150, so it is chosen as the right value. However, in the next step, M=100 is still given and we notice that L+M = 259, which is far away from 240. If we now go back and choose the node with L=140 instead, which then is followed by 240, the overall match between the M values and the L-differences is stronger. The algorithm should be able to find back to the optimal path, even if a mistake was made along the way.
Some additional information:
1) the start node is not necessarily part of the best combination/path, but if required, one could first develop an algorithm, which chooses the best starter candidate.
2) the optimal combination of nodes is following the sorted sequence and not "jumping back" -> so 1,3,5,7 is possible but not 1,3,5,2,7.
3) in the end, the differences between the L values of chosen nodes should in the mean squared sense be closest to the M values
Every help is much appreciated!
Upvotes: 0
Views: 1120
Reputation: 85
I now answer my own post with my current implementation, in order to structure my post and load images. Unfortunately, the code does not do what it should do. Imagine L,M and q given like in the images below. With the calcf and calcg functions I calculated the F and G matrices where F(i+1,j+1) is the calculated and stored f(i,j) and G(i+1,j+1) from g(i,j). The SSE of the optimal combination should be G(N+1,q+1), but the result is wrong. If anyone found the mistake, that would be much appreciated.
Upvotes: 0
Reputation: 51246
Suppose we are given a number M and a list of n numbers, L[1], ..., L[n], and we want to find a subsequence of at least q of the latter numbers that minimises the sum of squared errors (SSE) with respect to M, where the SSE of a list of k positions x[1], ..., x[k] with respect to M is given by
SSE(M, x[1], ..., x[k]) = sum((L[x[i]]-L[x[i-1]]-M)^2) over all 2 <= i <= k,
with the SSE of a list of 0 or 1 positions defined to be 0.
(I'm introducing the parameter q and associated constraint on the subsequence length here because without it, there always exists a subsequence of length exactly 2 that achieves the minimum possible SSE -- and I'm guessing that such a short sequence isn't helpful to you.)
This problem can be solved in O(qn^2) time and O(qn) space using dynamic programming.
Define f(i, j) to be the minimum sum of squared errors achievable under the following constraints:
Also define g(i, j) to be the minimum of f(k, j) over all 0 <= k <= i. Thus g(n, q) will be the minimum sum of squared errors achievable on the entire original problem. For efficient (O(1)) calculation of g(i, j), note that
g(i>0, j>0) = min(g(i-1, j), f(i, j))
g(0, 0) = 0
g(0, j>0) = infinity
To calculate f(i, j), note that if i > 0 then any solution must be formed by appending the ith position to some solution Y that selects at least j-1 positions and whose rightmost selected position is to the left of i -- i.e. whose rightmost selected position is k, for some k < i. The total SSE of this solution to the (i, j) subproblem will be whatever the SSE of Y was, plus a fixed term of (L[x[i]]-L[x[k]]-M)^2 -- so to minimise this total SSE, it suffices to minimise the SSE of Y. But we can compute that minimum: it is g(k, j-1).
Since this holds for any 0 <= k < i, it suffices to try all such values of k, and take the one that gives the lowest total SSE:
f(i>=j, j>=2) = min of (g(k, j-1) + (L[x[i]]-L[x[k]]-M)^2) over all 0 <= k < i
f(i>=j, j<2) = 0 # If we only need 0 or 1 position, SSE is 0
f(i, j>i) = infinity # Can't choose > i positions if the rightmost chosen position is i
With the above recurrences and base cases, we can compute g(n, q), the minimum possible sum of squared errors for the entire problem. By memoising values of f(i, j) and g(i, j), the time to compute all needed values of f(i, j) is O(qn^2), since there are at most (n+1)*(q+1) possible distinct combinations of input parameters (i, j), and computing a particular value of f(i, j) requires at most (n+1) iterations of the loop that chooses values of k, each iteration of which takes O(1) time outside of recursive subcalls. Storing solution values of f(i, j) requires at most (n+1)*(q+1), or O(qn), space, and likewise for g(i, j). As established above, g(i, j) can be computed in O(1) time when all needed values of f(x, y) have been computed, so g(n, q) can be computed in the same time complexity.
To actually reconstruct a solution corresponding to this minimum SSE, you can trace back through the computed values of f(i, j) in reverse order, each time looking for a value of k that achieves a minimum value in the recurrence (there may in general be many such values of k), setting i to this value of k, and continuing on until i=0. This is a standard dynamic programming technique.
Upvotes: 0
Reputation: 593
If I understand your question correctly, you could use Dijktras algorithm:
https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
http://www.mathworks.com/matlabcentral/fileexchange/20025-dijkstra-s-minimum-cost-path-algorithm
For that you have to know your neighbours of every node and create an Adjacency Matrix. With the implementation of Dijktras algorithm which I posted above you can specify edge weights. You could specify your edge weight in a manner that it is L of the node accessed + M. So for every node combination you have your L of new node + M. In that way the algorithm should find the optimum path between your nodes. To get all edge combinations you can use Matlabs graph functions:
http://se.mathworks.com/help/matlab/ref/graph.html
If I understand your problem correctly you need an undirected graph. You can access all edges with the command G.Edges after you have created the graph.
I know its not the perfect answer but I hope it helps!
P.S. Just watch out, Djikstras algorithm can only handle positive edge weights.
Upvotes: 1