Reputation: 419
I'm using data set with 200 data points that is used to draw B-Spline curve and I want to extract the 100 original control points from this curve to use it in one algorithm to solve one problem. The result of control points it's too small compared with the value of the data points of B-Spline curve so I don't know if I make something wrong in the following code or not I need help to know that because I must used these control points to complete my study in one algorithm
link of set of data points: https://drive.google.com/open?id=0B_2BUqaJptbqUkRWLWdmbmpQakk
Code :
% read data set
dataset = importdata("path of data set here");
x = dataset(:,1);
y = dataset(:,2);
for i=1:200
controlpoints(i,1) = x(i);
controlpoints(i,2) = y(i);
controlpoints(i,3) = 0;
end
% Create Q with some points from originla matrix controlpoints ( I take only 103 points)
counter =1;
for i=1:200
if (i==11) || (i==20) || (i==198)
Q(counter,:) = F(i,:);
counter = counter +1;
end
if ne(mod(i,2),0)
Q(counter,:) = F(i,:);
counter = counter+1;
end
end
I used Centripetal method to find control points from curve like the following picture
Complete my code:
% 2- Create Centripetal Nodes array from Q
CP(1) = 0;
CP(103) =1;
for i=2:102
sum = 0;
for j=2:102
sum = sum + sqrt(sqrt((Q(j,1)-Q(j-1,1))^2+(Q(j,2)-Q(j-1,2))^2));
end
CP(i) = CP(i-1) + (sqrt(sqrt((Q(i,1)-Q(i-1,1))^2+(Q(i,2)-Q(i-1,2))^2))/sum);
end
p=3; % degree
% 3- Create U_K array from CP array
for i=1:103
U_K(i) = CP(i);
end
To calculate control points we must follow this equation P=Qx(R') --> R' is inverse of R matrix so we must find R matrix then fins P(control points matrix) by the above equation. The following scenario is used to find R matrix
and to calculate N in B-Spline we must use these recursive function
Complete my code :
% 5- Calculate R_i_p matrix
for a=1:100
for b=1:100
R_i_p(a,b) = NCalculate(b,p,U_K(a),U_K);
end
end
% 6- Find inverse of R_i_p matrix
R_i_p_invers = inv(R_i_p);
% 7- Find Control points ( 100 points because we have curve with 3 degree )
for i=1:100
for k=1:100
PX(i) = R_inv(i,k) * Q(k,1);
PY(i) = R_inv(i,k) * Q(k,2);
end
end
PX2 = transpose(PX);
PY2 = transpose(PY);
P = horzcat(PX2,PY2); % The final control points you can see the values is very small compared with the original data points vlaues
My Recursive Function to find the previous R matrix:
function z = NCalculate(j,k,u,U)
if (k == 1 )
if ( (u > U(j)) && (u <= U(j+1)) )
z = 1;
else
z = 0;
end
else
z = (u-U(j)/U(j+k-1)-U(j)* NCalculate(j,k-1,u,U) ) + (U(j+k)-u/U(j+k)-U(j+1) * NCalculate(j+1,k-1,u,U));
end
end
Really I need to this help so much , I tried in this problem from one week :(
Updated:
Figure 1 for the main B-spline Curve , Figure 2 for the result control points after applied reverse engineering on this curve so the value is so far and so small compared with the original data points value
Updated(2): I made some updates on my code but the problem now in the inverse of R matrix it gives me infinite value at all time
% 2- Create Centripetal Nodes array from Q
CP(1) = 0;
CP(100) =1;
sum = 0;
for i=2:100
sum = sum + sqrt(sqrt((Q(i,1)-Q(i-1,1))^2+(Q(i,2)-Q(i-1,2))^2));
end
for i=2:99
CP(i) = CP(i-1) + (sqrt(sqrt((Q(i,1)-Q(i-1,1))^2+(Q(i,2)-Q(i-1,2))^2))/sum);
end
% 3- Create U_K array from CP array
for i=1:100
U_K(i) = CP(i);
end
p=3;
% create Knot vector
% The first elements
for i=1:p+1
U(i) = 0;
end
% The last elements
for i=100:99+p+1
U(i) = 1;
end
% The remain elements
for j=2:96
sum = 0;
for i=j:(j+p-1)
sum = sum + U_K(i);
end
U(j+p) = (1/p)* sum;
end
% 5- Calculate R_i_p matrix
for a=1:100
for b=1:100
R_i_p(a,b) = NCalculate(b,p,U_K(a),U);
end
end
R_i_p_invers = inv(R_i_p);
% 7- Find Control points ( 100 points )
for i=1:100
for k=1:100
if isinf(R_inv(i,k))
R_inv(i,k) = 0;
end
PX(i) = R_inv(i,k) * Q(k,1);
PY(i) = R_inv(i,k) * Q(k,2);
end
end
PX2 = transpose(PX);
PY2 = transpose(PY);
P = horzcat(PX2,PY2);
Note: I updated my NCalculate recursive function to give me 0 if the result is NaN (not a number )
function z = NCalculate(j,k,u,U)
if (k == 1 )
if ( (u >= U(j)) && (u < U(j+1)) )
z = 1;
else
z = 0;
end
else
z = (u-U(j)/U(j+k-1)-U(j)* NCalculate(j,k-1,u,U) ) + (U(j+k)-u/U(j+k)-U(j+1) * NCalculate(j+1,k-1,u,U));
end
if isnan(z)
z =0;
end
end
Upvotes: 2
Views: 2025
Reputation: 3633
I think there are a few dubious issues in your approach:
0) Denote the parameters as p[i], where i = 0 to (n-1), p[0]=0.0 and n is number of points.
1) Create the knot values as
knot[0] = (p[1]+p[2]+p[3])/D (where D is degree)
knot[1] = (p[2]+p[3]+p[4])/D
knot[2] = (p[3]+p[4]+p[5])/D
......
These are the interior knot values. You should notice that p[0] and p[n-1] will not be used in this step. You will have (n-D-1) interior knots.
2) Now, add p[0] to the front of the knot values (D+1) times and add p[n-1] to the end of the knot values (D+1) times and you are done. At the end, you will have (N+D+1) knots in total.
Upvotes: 1