Reputation: 143
I have a vector of integers as input values (starting values for optim par)
my.data.var <- c(10,0.25,0.25,0.25,0.25,0.25,
10,0.25,0.25,0.25,0.25,0.25,
10,0.25,0.25,0.25,0.25,0.25,
10,0.25,0.25,0.25,0.25,0.25)
Optimization problem is a min. problem.
The error function calculates sum of square root of diff in values between TWO MATRICES (Given Values Matrix vs Calculated Matrix)
my.data.var.mat <- matrix(my.data.var,nrow = 4,ncol = 6,byrow = TRUE)
The constraint that I must introduce is that colSum(my.data.var.mat) <=1
The optim is defined as
sols<-optim(my.data.var,Error.func,method="L-BFGS-B",upper=c(Inf,1,1,1,1,1,Inf,1,1,1,1,1,Inf,1,1,1,1,1,Inf,1,1,1,1,1),
lower=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))
Error Function is defined as
Error.func <- function(my.data.var){
my.data.var.mat <- matrix(my.data.var,nrow = ncol(my.data.matrix.prod),ncol = ncol(my.data.matrix.inj)+1,byrow = TRUE)
Calc.Qjk.Value <- Qjk.Cal.func(my.data.timet0,my.data.qo,my.data.matrix.time,
my.data.matrix.inj, my.data.matrix.prod,my.data.var,my.data.var.mat)
diff.values <- my.data.matrix.prod-Calc.Qjk.Value #FIND DIFFERENCE BETWEEN CAL. MATRIX AND ORIGINAL MATRIX
Error <- ((colSums ((diff.values^2), na.rm = FALSE, dims = 1))/nrow(my.data.matrix.inj))^0.5 #sum of square root of the diff
Error_total <- sum(Error,na.rm=FALSE)/ncol(my.data.matrix.prod) # total avg error
Error_total
}
Given Dataset: my.data.matrix.prod
, my.data.timet0, my.data.qo, my.data.matrix.time, my.data.matrix.inj
So, my question is how and where should I introduce the matrix col sum constraint? Or the other way to put it as how would OPTIM vary integer vector under Matrix col sum constraint?
Upvotes: 0
Views: 587
Reputation: 143
I realized that nloptr
is a better option than optim
since my problem consisted of "inequality constraints".
I modified the implementation as I explain in this post here. "multiple inequality constraints" - Minimization with R nloptr package
Hence, closing this thread.
Upvotes: 1