xxx222
xxx222

Reputation: 3244

Why does the lasso here didn't provide me with zero coefficient?

I got the idea of implementing my version of deep feature selection is from the paper here,http://link.springer.com/chapter/10.1007%2F978-3-319-16706-0_20

The basic idea of deep feature selection according to this paper is to add a one to one mapping layer before any full connected hidden layer, then by adding a regularization term (whether lasso or elastic net) to produce zeros in the input layer weights.

My question is, even though it seems I have implemented the deep feature selection framework well, while testing on the random data generated by numpy.rand.random(1000,50) fails to give me any zeros on the initial weight. Is is a common thing for lasso like regularization? Am I going to adjust the parameters I used for this framework (even larger epochs)? Or did I do something wrong with my code.

class DeepFeatureSelectionMLP:
    def __init__(self, X, Y, hidden_dims=[100], epochs=1000,
                 lambda1=0.001, lambda2=1.0, alpha1=0.001, alpha2=0.0, learning_rate=0.1):
        # Initiate the input layer

        # Get the dimension of the input X
        n_sample, n_feat = X.shape
        n_classes = len(np.unique(Y))

        # One hot Y
        one_hot_Y = np.zeros((len(Y), n_classes))
        for i,j in enumerate(Y):
            one_hot_Y[i][j] = 1

        self.epochs = epochs

        Y = one_hot_Y

        # Store up original value
        self.X = X
        self.Y = Y

        # Two variables with undetermined length is created
        self.var_X = tf.placeholder(dtype=tf.float32, shape=[None, n_feat], name='x')
        self.var_Y = tf.placeholder(dtype=tf.float32, shape=[None, n_classes], name='y')

        self.input_layer = One2OneInputLayer(self.var_X)

        self.hidden_layers = []
        layer_input = self.input_layer.output

        # Create hidden layers
        for dim in hidden_dims:
            self.hidden_layers.append(DenseLayer(layer_input, dim))
            layer_input = self.hidden_layers[-1].output

        # Final classification layer, variable Y is passed
        self.softmax_layer = SoftmaxLayer(self.hidden_layers[-1].output, n_classes, self.var_Y)

        n_hidden = len(hidden_dims)

        # regularization terms on coefficients of input layer 
        self.L1_input = tf.reduce_sum(tf.abs(self.input_layer.w))
        self.L2_input = tf.nn.l2_loss(self.input_layer.w)

        # regularization terms on weights of hidden layers        
        L1s = []
        L2_sqrs = []
        for i in xrange(n_hidden):
            L1s.append(tf.reduce_sum(tf.abs(self.hidden_layers[i].w)))
            L2_sqrs.append(tf.nn.l2_loss(self.hidden_layers[i].w))

        L1s.append(tf.reduce_sum(tf.abs(self.softmax_layer.w)))
        L2_sqrs.append(tf.nn.l2_loss(self.softmax_layer.w))

        self.L1 = tf.add_n(L1s)
        self.L2_sqr = tf.add_n(L2_sqrs)

        # Cost with two regularization terms
        self.cost = self.softmax_layer.cost \
                    + lambda1*(1.0-lambda2)*0.5*self.L2_input + lambda1*lambda2*self.L1_input \
                    + alpha1*(1.0-alpha2)*0.5 * self.L2_sqr + alpha1*alpha2*self.L1

        self.optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(self.cost)

        self.y = self.softmax_layer.y

    def train(self, batch_size=100):
        sess = tf.Session()
        sess.run(tf.initialize_all_variables())

        for i in xrange(self.epochs):
            x_batch, y_batch = get_batch(self.X, self.Y, batch_size)
            sess.run(self.optimizer, feed_dict={self.var_X: x_batch, self.var_Y: y_batch})
            if (i + 1) % 50 == 0:
                l = sess.run(self.cost, feed_dict={self.var_X: x_batch, self.var_Y: y_batch})
                print('epoch {0}: global loss = {1}'.format(i, l))
                self.selected_w = sess.run(self.input_layer.w)
                print(self.selected_w)

class One2OneInputLayer(object):
    # One to One Mapping!
    def __init__(self, input):
        """
            The second dimension of the input,
            for each input, each row is a sample
            and each column is a feature, since 
            this is one to one mapping, n_in equals 
            the number of features
        """
        n_in = input.get_shape()[1].value

        self.input = input

        # Initiate the weight for the input layer
        w = tf.Variable(tf.zeros([n_in,]), name='w')

        self.w = w
        self.output = self.w * self.input
        self.params = [w]

class DenseLayer(object):
    # Canonical dense layer
    def __init__(self, input, n_out, activation='sigmoid'):
        """
            The second dimension of the input,
            for each input, each row is a sample
            and each column is a feature, since 
            this is one to one mapping, n_in equals 
            the number of features

            n_out defines how many nodes are there in the 
            hidden layer
        """
        n_in = input.get_shape()[1].value
        self.input = input

        # Initiate the weight for the input layer

        w = tf.Variable(tf.ones([n_in, n_out]), name='w')
        b = tf.Variable(tf.ones([n_out]), name='b')

        output = tf.add(tf.matmul(input, w), b)
        output = activate(output, activation)

        self.w = w
        self.b = b
        self.output = output
        self.params = [w]

class SoftmaxLayer(object):
    def __init__(self, input, n_out, y):
        """
            The second dimension of the input,
            for each input, each row is a sample
            and each column is a feature, since 
            this is one to one mapping, n_in equals 
            the number of features

            n_out defines how many nodes are there in the 
            hidden layer
        """
        n_in = input.get_shape()[1].value
        self.input = input

        # Initiate the weight and biases for this layer
        w = tf.Variable(tf.random_normal([n_in, n_out]), name='w')
        b = tf.Variable(tf.random_normal([n_out]), name='b')

        pred = tf.add(tf.matmul(input, w), b)

        cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))

        self.y = y
        self.w = w
        self.b = b
        self.cost = cost
        self.params= [w]

Upvotes: 0

Views: 788

Answers (1)

Alexandre Passos
Alexandre Passos

Reputation: 5206

Gradient descent algorithms such as Adam do not give exact zeros when using l1 regularization. Instead, something like ftrl or proximal adagrad can give you exact zeros.

Upvotes: 1

Related Questions