Reputation: 1259
I am creating a machine learning algorithm and want to export it. Suppose i am using scikit learn library and Random Forest algorithm.
modelC=RandomForestClassifier(n_estimators=30)
m=modelC.fit(trainvec,yvec)
modelC.model
How can i export it or is there a any function for it ?
Upvotes: 1
Views: 3907
Reputation: 10503
If you follow scikit documentation on model persistence
In [1]: from sklearn.ensemble import RandomForestClassifier
In [2]: from sklearn import datasets
In [3]: from sklearn.externals import joblib
In [4]: iris = datasets.load_iris()
In [5]: X, y = iris.data, iris.target
In [6]: m = RandomForestClassifier(2).fit(X, y)
In [7]: m
Out[7]:
RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
max_depth=None, max_features='auto', max_leaf_nodes=None,
min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=2, n_jobs=1,
oob_score=False, random_state=None, verbose=0,
warm_start=False)
In [8]: joblib.dump(m, "filename.cls")
In fact, you can use pickle.dump
instead of joblib
, but joblib
does a very good job at compressing the numpy
arrays inside classifiers.
Upvotes: 7