Reputation: 77
Regarding the access time to the cache levels (L1, L2, L3) and RAM, I encountered with the strange behavior which I didn't find the answer yet, It would be appreciated if you could help me :)
I started to filling the block of memory in the following manner, I have the different block size as input, for example 16 Byte, 32 Byte, .... 256 KB, For each specific block I read memory, count it and write it back. So for example for 1 KB, I have 256 different array of counter (because my counter is int32 and 32 bits = 4 Bytes), I start with zero for 256 different array of counters as beginning point (let call it array of counters) count it and write it back, I did it for 10,000 counting(0~10000), and do this 10,000 for 100 times and record the this 100 results, get the average and calculate the process time (the time calculated like following code)
COUNTERS_MAX = 10000;
ITERATION_MAX = 100;
// The Function which each core should do, now is counter (cnt = cnt + 1)
static int
lcore_recv(struct lcore_params *p)
{
unsigned lcore_id = rte_lcore_id();
printf("Starting core %u\n", lcore_id);
#ifndef EXCEL_OUTPUT
#ifndef DIRECT_FILE_WRITE
struct tableEntry outputTable[ITERATION_MAX];
#endif
#endif
while(canContinue_)
{
//printf("Starting core %u\n", lcore_id);
//int index=((lcore_id-p->baseIndex)-1+CORE_MAX)%CORE_MAX;
void * vp;
struct data * d = p->valueMem;
FILE* fp = p->fp;
//fprintf(fp, "Iteration %d ----------------------\n", p->iteration);
//int index = p->index;
struct timespec t1, t2;
for(int q = 0; q < ITERATION_MAX; q++)
{
double processTime = 0;
clock_gettime(1, &t1);
for(uint32_t p = 0; p <= COUNTERS_MAX - 1; p++)
{
for (int i = 0; i < d->count; i++)
{
d->value[i]++;
}
}
clock_gettime(1, &t2);
processTime = (t2.tv_sec*1e9 + t2.tv_nsec) - (t1.tv_sec*1e9 + t1.tv_nsec);/* nanoseconds */
//Checks last value of each counter
int expectedVal = (q + 1) * COUNTERS_MAX;
#ifndef EXCEL_OUTPUT
#ifdef DIRECT_FILE_WRITE
fprintf(fp," Expected : %d\n", expectedVal);
#endif
#endif
bool allOk = true;
for (int i = 0; i < d->count; i++)
{
if(d->value[i]!=expectedVal)
{
if(allOk)
{
allOk = false;
#ifndef EXCEL_OUTPUT
#ifdef DIRECT_FILE_WRITE
fprintf(fp," Failed : ");
#endif
#endif
}
#ifndef EXCEL_OUTPUT
#ifdef DIRECT_FILE_WRITE
fprintf(fp,"%d ", i);
#endif
#endif
}
}
#ifdef EXCEL_OUTPUT
struct tableEntry* entry= &outputTable[p->index][p->iteration][q];
entry->allOk=allOk;
entry->expectedVal=expectedVal;
entry->processTime=processTime;
#else
#ifdef DIRECT_FILE_WRITE
if(allOk)
{
fprintf(fp,"All counters are ok \n");
}
else
{
fprintf(fp,"\n");
}
fprintf(fp, "*** Time = %f ns \n", processTime);
#else
struct tableEntry* entry= &outputTable[q];
entry->allOk=allOk;
entry->expectedVal=expectedVal;
entry->processTime=processTime;
#endif
#endif
}
#ifndef EXCEL_OUTPUT
#ifndef DIRECT_FILE_WRITE
for(int q = 0; q < ITERATION_MAX; q++)
{
struct tableEntry* entry= &outputTable[q];
fprintf(fp," Expected : %d\n", entry->expectedVal);
if(entry->allOk)
{
fprintf(fp,"All counters are ok \n");
}
else
{
fprintf(fp,"Failed \n");
}
fprintf(fp, "*** Time = %f ns \n", entry->processTime);
}
#endif
#endif
pthread_mutex_lock(&mutexLock_);
processedCount++;
pthread_cond_signal(&readWaitHandle);
pthread_cond_wait(&newIterWaitHandle, &mutexLock_);
pthread_mutex_unlock(&mutexLock_);
}
return 0;
}
So for each block I did the same test. For example if I have 20 different test points (block memories, like 16 B, 32 B, ....), I will have the matrices with 100 rows and 20 columns of time in 'ns'. So each column shows the different block size and each row show different 100 test. Finally I got the average on each column and calculated the process time for each column, the strange behaviour shows up like follow, the block size based on Byte and the Y axis is the latency for each process in 'ns', here you could see 3 different cores which run at the same time with the same more or less behaviour Whenever I started with small block like 16 B, around the intervals of 50 Byte~600 Bytes I always see this crazy behaviour and I don't know why? (my first question) So if continue for more than 2.93 MB (which approximately 8 MB(LLC size) / 3 (different core which run simultaneously), we have a jump like follow) 3 different core run simultaneously My second question is that if this jump is make sense, I mean the difference btw LLC latency and RAM latency around 2.5 or 3 times is OK, OR should be more)
PS.My system is Core i7, 3.4 Ghz, L1:32 KB, L2: 256 KB and L3 : 8 MB with 16 GB RAM
Thanks in advance for your help and considerations
Upvotes: 2
Views: 1327
Reputation: 77
The assembly code (inner loop) as follow exactly btw TEST TEST ON and TEST TEST OFF
// TEST TEST ON
clock_gettime(1, &t1);
47: 48 89 e6 mov rsi,rsp
4a: bf 01 00 00 00 mov edi,0x1
4f: e8 00 00 00 00 call 54 <lcore_recv+0x54>
54: 8b 4b 08 mov ecx,DWORD PTR [rbx+0x8]
57: be 10 27 00 00 mov esi,0x2710
5c: 0f 1f 40 00 nop DWORD PTR [rax+0x0]
for(uint32_t p = 0; p <= COUNTERS_MAX - 1; p++)
{
for (int i = 0; i < d->count; i++)
60: 85 c9 test ecx,ecx
62: 74 1d je 81 <lcore_recv+0x81>
64: 48 8b 03 mov rax,QWORD PTR [rbx]
67: 31 d2 xor edx,edx
69: 0f 1f 80 00 00 00 00 nop DWORD PTR [rax+0x0]
{
d->value[i]++;
70: 83 00 01 add DWORD PTR [rax],0x1
double processTime = 0;
// TEST TEST ON
clock_gettime(1, &t1);
for(uint32_t p = 0; p <= COUNTERS_MAX - 1; p++)
{
for (int i = 0; i < d->count; i++)
73: 83 c2 01 add edx,0x1
76: 48 83 c0 04 add rax,0x4
7a: 8b 4b 08 mov ecx,DWORD PTR [rbx+0x8]
7d: 39 ca cmp edx,ecx
7f: 72 ef jb 70 <lcore_recv+0x70>
for(int q = 0; q < ITERATION_MAX; q++)
{
double processTime = 0;
// TEST TEST ON
clock_gettime(1, &t1);
for(uint32_t p = 0; p <= COUNTERS_MAX - 1; p++)
81: 83 ee 01 sub esi,0x1
84: 75 da jne 60 <lcore_recv+0x60>
for (int i = 0; i < d->count; i++)
{
d->value[i]++;
}
}
clock_gettime(1, &t2);
86: 48 8d 74 24 10 lea rsi,[rsp+0x10]
8b: bf 01 00 00 00 mov edi,0x1
90: e8 00 00 00 00 call 95 <lcore_recv+0x95>
#ifdef DIRECT_FILE_WRITE
fprintf(fp," Expected : %d\n", expectedVal);
#endif
#endif
bool allOk = true;
for (int i = 0; i < d->count; i++)
95: 8b 4b 08 mov ecx,DWORD PTR [rbx+0x8]
clock_gettime(1, &t2);
processTime = (t2.tv_sec*1e9 + t2.tv_nsec) - (t1.tv_sec*1e9 + t1.tv_nsec);/* nanoseconds */
// TEST TEST OFF
//Checks last value of each counter
int expectedVal = (q + 1) * COUNTERS_MAX;
98: 41 8d 7c 24 01 lea edi,[r12+0x1]
{
d->value[i]++;
}
}
clock_gettime(1, &t2);
processTime = (t2.tv_sec*1e9 + t2.tv_nsec) - (t1.tv_sec*1e9 + t1.tv_nsec);/* nanoseconds */
9d: c4 e1 f3 2a 4c 24 10 vcvtsi2sd xmm1,xmm1,QWORD PTR [rsp+0x10]
a4: c4 e1 eb 2a 14 24 vcvtsi2sd xmm2,xmm2,QWORD PTR [rsp]
aa: c4 e1 fb 2a 44 24 18 vcvtsi2sd xmm0,xmm0,QWORD PTR [rsp+0x18]
#ifdef DIRECT_FILE_WRITE
fprintf(fp," Expected : %d\n", expectedVal);
#endif
#endif
bool allOk = true;
for (int i = 0; i < d->count; i++)
b1: 85 c9 test ecx,ecx
{
d->value[i]++;
}
}
clock_gettime(1, &t2);
processTime = (t2.tv_sec*1e9 + t2.tv_nsec) - (t1.tv_sec*1e9 + t1.tv_nsec);/* nanoseconds */
b3: c5 f3 59 0d 00 00 00 vmulsd xmm1,xmm1,QWORD PTR [rip+0x0] # bb <lcore_recv+0xbb>
ba: 00
bb: c5 eb 59 15 00 00 00 vmulsd xmm2,xmm2,QWORD PTR [rip+0x0] # c3 <lcore_recv+0xc3>
c2: 00
c3: c5 f3 58 d8 vaddsd xmm3,xmm1,xmm0
c7: c4 e1 f3 2a 4c 24 08 vcvtsi2sd xmm1,xmm1,QWORD PTR [rsp+0x8]
ce: c5 eb 58 c1 vaddsd xmm0,xmm2,xmm1
d2: c5 e3 5c c0 vsubsd xmm0,xmm3,xmm0
#ifdef DIRECT_FILE_WRITE
fprintf(fp," Expected : %d\n", expectedVal);
#endif
#endif
bool allOk = true;
for (int i = 0; i < d->count; i++)
d6: 74 6a je 142 <lcore_recv+0x142>
d8: 48 8b 33 mov rsi,QWORD PTR [rbx]
db: 31 c0 xor eax,eax
#ifndef EXCEL_OUTPUT
#ifdef DIRECT_FILE_WRITE
fprintf(fp," Expected : %d\n", expectedVal);
#endif
#endif
bool allOk = true;
dd: ba 01 00 00 00 mov edx,0x1
e2: 66 0f 1f 44 00 00 nop WORD PTR [rax+rax*1+0x0]
e8: 44 39 2c 86 cmp DWORD PTR [rsi+rax*4],r13d
ec: 41 0f 45 d6 cmovne edx,r14d
f0: 48 83 c0 01 add rax,0x1
for (int i = 0; i < d->count; i++)
f4: 39 c1 cmp ecx,eax
f6: 77 f0 ja e8 <lcore_recv+0xe8>
#endif
}
}
Upvotes: 0
Reputation: 77
Ubuntu 14.04.4 LTS, I use gcc, my makefile is as follow
ifeq ($(RTE_SDK),)
$(error "Please define RTE_SDK environment variable")
endif
# Default target, can be overriden by command line or environment
RTE_TARGET ?= x86_64-native-linuxapp-gcc
include $(RTE_SDK)/mk/rte.vars.mk
# binary name
APP = Mahdi_test
INC += $(wildcard include/*.h)
# all source are stored in SRCS-y
SRCS-y := main.c
CFLAGS += $(WERROR_FLAGS) -I -S$(SRCDIR)/include -I/usr/local/include
# Most optimizations are only enabled if an -O level is set on the command line,
# otherwise they are disabled, even if individual optimization flags are specified.
# With -O, the compiler tries to reduce code size and execution time,
# without performing any optimizations that take a great deal of compilation time.
# -O3 Optimize yet more. -O3 turns on all optimizations specified by -O2
# EXTRA_CFLAGS += -O3 -S -Wno-error -std=c99
# After following line do make, go to ./build and run : objdump -d -M intel -S main.o >a.txt
EXTRA_CFLAGS += -O3 -g -Wno-error -std=c99
# rte.extapp.mk : External application
include $(RTE_SDK)/mk/rte.extapp.mk
CPU : Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 8 On-line CPU(s) list: 0-7 Thread(s) per core: 2 Core(s) per socket: 4 Socket(s): 1 NUMA node(s): 1 Vendor ID: GenuineIntel CPU family: 6 Model: 42 Stepping: 7 CPU MHz: 1600.000 BogoMIPS: 6784.24 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 8192K NUMA node0 CPU(s): 0-7
All code is in single file (I am using dpdk in order to use the benefits of this library),
#if __STDC_VERSION__ >= 199901L
#define _XOPEN_SOURCE 600
#else
#define _XOPEN_SOURCE 500
#endif /* __STDC_VERSION__ */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <rte_memory.h>
#include <rte_malloc.h>
#include <string.h>
#include <time.h>
#include <pthread.h>
#include <rte_ring.h>
#include <math.h>
#include <stdbool.h>
#include <sys/types.h>
#define EXCEL_OUTPUT
#ifndef EXCEL_OUTPUT
#define DIRECT_FILE_WRITE
#endif
#define CORE_MAX 3
#define BLOCK_MAX 20 // BKMG = 4, ~ 168.72 MB
#define COUNTERS_MAX 10000
#define ITERATION_MAX 100
#define Factor 1.5
#define BKMG 4
char* testNumber = "23";
/*
uint32_t sizes[BLOCK_MAX] = {
1*Factor*pow(2, 10)/4, 2*Factor*pow(2, 10)/4, 4*Factor*pow(2, 10)/4, 8*Factor*pow(2, 10)/4, 16*Factor*pow(2, 10)/4, 32*Factor*pow(2, 10)/4, 64*Factor*pow(2, 10)/4, 128*Factor*pow(2, 10)/4, 256*Factor*pow(2, 10)/4, 512*Factor*pow(2, 10)/4,
1*Factor*pow(2, 20)/4, 2*Factor*pow(2, 20)/4, 4*Factor*pow(2, 20)/4, 8*Factor*pow(2, 20)/4, 16*Factor*pow(2, 20)/4, 32*Factor*pow(2, 20)/4, 64*Factor*pow(2, 20)/4, 128*Factor*pow(2, 20)/4, 256*Factor*pow(2, 20)/4, 512*Factor*pow(2, 20)/4,
1*Factor*pow(2, 30)/4, 2*Factor*pow(2, 30)/4
};
*/
uint32_t sizes[BLOCK_MAX] = {
pow(Factor, 1)*pow(2, BKMG)/4, pow(Factor, 2)*pow(2, BKMG)/4, pow(Factor, 3)*pow(2, BKMG)/4, pow(Factor, 4)*pow(2, BKMG)/4, pow(Factor, 5)*pow(2, BKMG)/4, pow(Factor, 6)*pow(2, BKMG)/4, pow(Factor, 7)*pow(2, BKMG)/4, pow(Factor, 8)*pow(2, BKMG)/4, pow(Factor, 9)*pow(2, BKMG)/4, pow(Factor,10)*pow(2, BKMG)/4,
pow(Factor,11)*pow(2, BKMG)/4, pow(Factor,12)*pow(2, BKMG)/4, pow(Factor,13)*pow(2, BKMG)/4, pow(Factor,14)*pow(2, BKMG)/4, pow(Factor,15)*pow(2, BKMG)/4, pow(Factor,16)*pow(2, BKMG)/4, pow(Factor,17)*pow(2, BKMG)/4, pow(Factor,18)*pow(2, BKMG)/4, pow(Factor,19)*pow(2, BKMG)/4, pow(Factor,20)*pow(2, BKMG)/4,
pow(Factor,21)*pow(2, BKMG)/4, pow(Factor,22)*pow(2, BKMG)/4, pow(Factor,23)*pow(2, BKMG)/4, pow(Factor,24)*pow(2, BKMG)/4, pow(Factor,25)*pow(2, BKMG)/4, pow(Factor,26)*pow(2, BKMG)/4, pow(Factor,27)*pow(2, BKMG)/4, pow(Factor,28)*pow(2, BKMG)/4, pow(Factor,29)*pow(2, BKMG)/4, pow(Factor,30)*pow(2, BKMG)/4,
pow(Factor,31)*pow(2, BKMG)/4, pow(Factor,32)*pow(2, BKMG)/4, pow(Factor,33)*pow(2, BKMG)/4, pow(Factor,34)*pow(2, BKMG)/4, pow(Factor,35)*pow(2, BKMG)/4, pow(Factor,36)*pow(2, BKMG)/4, pow(Factor,37)*pow(2, BKMG)/4, pow(Factor,38)*pow(2, BKMG)/4, pow(Factor,39)*pow(2, BKMG)/4, pow(Factor,40)*pow(2, BKMG)/4,
pow(Factor,41)*pow(2, BKMG)/4, pow(Factor,42)*pow(2, BKMG)/4, pow(Factor,43)*pow(2, BKMG)/4, pow(Factor,44)*pow(2, BKMG)/4, pow(Factor,45)*pow(2, BKMG)/4, pow(Factor,46)*pow(2, BKMG)/4, pow(Factor,47)*pow(2, BKMG)/4, pow(Factor,48)*pow(2, BKMG)/4, pow(Factor,49)*pow(2, BKMG)/4, pow(Factor,50)*pow(2, BKMG)/4,
};
/*
char* names[BLOCK_MAX] = {
"1K", "2K", "4K", "8K", "16K", "32K", "64K", "128K", "256K", "512K",
"1M", "2M", "4M", "8M", "16M", "32M", "64M", "128M", "256M", "512M",
"1G", "2G"
};
*/
char* names[BLOCK_MAX] = {
"01", "02", "03", "04", "05", "06", "07", "08", "09", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
"21", "22", "23", "24", "25", "26", "27", "28", "29", "30",
"31", "32", "33", "34", "35", "36", "37", "38", "39", "40",
"41", "42", "43", "44", "45", "46", "47", "48", "49", "50",
};
// This struct keeps the inoput parameter for each single core (for 3 cores we have 3 of this struct)
struct lcore_params
{
struct data* valueMem; // This pointer is the address of one sample of data struct which include the address of memorty related to core and the size of that
int iteration; // This keeos the number of main iteratiopn, which block of memory now is processing
FILE* fp; // This keeps the handler address of opened file for related core, which via that we could write in mentioned file
int index; // This keeps the number of core, here we don't use it anymore
};
// Keeps the information regarding the memory which allocates to cores
struct data
{
uint32_t* value; // This keeps the memory address. This memory is allocated independent for each specific core
uint32_t count; // The variable 'count' shows the number of 32-bits taken memory.
};
struct tableEntry
{
int expectedVal;
double processTime;
bool allOk;
};
// This thread variavbles is using for coordination btw cores in order to prevent them interfereing each other while checking readWaitHandle and newIterWaitHandle
pthread_mutex_t mutexLock_;
// All slave cores wait here till the signal issues(via pthread_cond_signal(&newIterWaitHandle)) from master core in order to start new memory block
// Conversely going through newIterWaitHandle goes up here which master core wait till all slave finish their tasks
pthread_cond_t readWaitHandle, newIterWaitHandle;
bool canContinue_ = true;
int processedCount = 0;
#ifdef EXCEL_OUTPUT
//holds all outputs. we save them at the end of work
struct tableEntry outputTable[CORE_MAX][BLOCK_MAX][ITERATION_MAX];
#endif
// The Function which each core should do, now is counter (cnt = cnt + 1)
static int
lcore_recv(struct lcore_params *p)
{
unsigned lcore_id = rte_lcore_id();
printf("Starting core %u\n", lcore_id);
#ifndef EXCEL_OUTPUT
#ifndef DIRECT_FILE_WRITE
struct tableEntry outputTable[ITERATION_MAX];
#endif
#endif
while(canContinue_)
{
//printf("Starting core %u\n", lcore_id);
//int index=((lcore_id-p->baseIndex)-1+CORE_MAX)%CORE_MAX;
void * vp;
struct data * d = p->valueMem;
FILE* fp = p->fp;
//fprintf(fp, "Iteration %d ----------------------\n", p->iteration);
//int index = p->index;
struct timespec t1, t2;
for(int q = 0; q < ITERATION_MAX; q++)
{
double processTime = 0;
// TEST TEST ON
clock_gettime(1, &t1);
for(uint32_t p = 0; p <= COUNTERS_MAX - 1; p++)
{
for (int i = 0; i < d->count; i++)
{
d->value[i]++;
}
}
clock_gettime(1, &t2);
processTime = (t2.tv_sec*1e9 + t2.tv_nsec) - (t1.tv_sec*1e9 + t1.tv_nsec);/* nanoseconds */
// TEST TEST OFF
//Checks last value of each counter
int expectedVal = (q + 1) * COUNTERS_MAX;
#ifndef EXCEL_OUTPUT
#ifdef DIRECT_FILE_WRITE
fprintf(fp," Expected : %d\n", expectedVal);
#endif
#endif
bool allOk = true;
for (int i = 0; i < d->count; i++)
{
if(d->value[i]!=expectedVal)
{
if(allOk)
{
allOk = false;
#ifndef EXCEL_OUTPUT
#ifdef DIRECT_FILE_WRITE
fprintf(fp," Failed : ");
#endif
#endif
}
#ifndef EXCEL_OUTPUT
#ifdef DIRECT_FILE_WRITE
fprintf(fp,"%d ", i);
#endif
#endif
}
}
#ifdef EXCEL_OUTPUT
struct tableEntry* entry= &outputTable[p->index][p->iteration][q];
entry->allOk=allOk;
entry->expectedVal=expectedVal;
entry->processTime=processTime;
#else
#ifdef DIRECT_FILE_WRITE
if(allOk)
{
fprintf(fp,"All counters are ok \n");
}
else
{
fprintf(fp,"\n");
}
fprintf(fp, "*** Time = %f ns \n", processTime);
#else
struct tableEntry* entry= &outputTable[q];
entry->allOk=allOk;
entry->expectedVal=expectedVal;
entry->processTime=processTime;
#endif
#endif
}
#ifndef EXCEL_OUTPUT
#ifndef DIRECT_FILE_WRITE
for(int q = 0; q < ITERATION_MAX; q++)
{
struct tableEntry* entry= &outputTable[q];
fprintf(fp," Expected : %d\n", entry->expectedVal);
if(entry->allOk)
{
fprintf(fp,"All counters are ok \n");
}
else
{
fprintf(fp,"Failed \n");
}
fprintf(fp, "*** Time = %f ns \n", entry->processTime);
}
#endif
#endif
pthread_mutex_lock(&mutexLock_);
processedCount++;
pthread_cond_signal(&readWaitHandle);
pthread_cond_wait(&newIterWaitHandle, &mutexLock_);
pthread_mutex_unlock(&mutexLock_);
}
return 0;
}
// mem_alloc is used in order to release the allocated memory and resize the new memory with new size for it. This function is called for each separate core
static void
mem_alloc(struct data* valueMem, uint32_t newSize, uint32_t iteration)
{
valueMem->count = newSize;
if(valueMem->value)
{
rte_free(valueMem->value);
}
valueMem->value = (uint32_t *)rte_zmalloc(NULL, sizeof(uint32_t) * newSize, 0);
if(!valueMem->value)
{
printf("Memory Fail\n");
}
}
#ifdef EXCEL_OUTPUT
void saveToExcelFile()
{
char name[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
strcat(name, "output");
strcat(name, testNumber);
strcat(name, ".xml");
FILE* fp = fopen(name, "w");
// some setting of excel and xml file
fprintf(fp,"<?xml version=\"1.0\"?>\n\
<?mso-application progid=\"Excel.Sheet\"?>\n\
<Workbook xmlns=\"urn:schemas-microsoft-com:office:spreadsheet\"\n\
xmlns:o=\"urn:schemas-microsoft-com:office:office\"\n\
xmlns:x=\"urn:schemas-microsoft-com:office:excel\"\n\
xmlns:ss=\"urn:schemas-microsoft-com:office:spreadsheet\"\n\
xmlns:html=\"http://www.w3.org/TR/REC-html40\">\n\
<DocumentProperties xmlns=\"urn:schemas-microsoft-com:office:office\">\n\
<Author>m</Author>\n\
<LastAuthor>m</LastAuthor>\n\
<Created>2016-06-11T13:00:49Z</Created>\n\
<LastSaved>2016-06-11T13:01:30Z</LastSaved>\n\
<Version>15.00</Version>\n\
</DocumentProperties>\n\
<OfficeDocumentSettings xmlns=\"urn:schemas-microsoft-com:office:office\">\n\
<AllowPNG/>\n\
</OfficeDocumentSettings>\n\
<ExcelWorkbook xmlns=\"urn:schemas-microsoft-com:office:excel\">\n\
<WindowHeight>7755</WindowHeight>\n\
<WindowWidth>20490</WindowWidth>\n\
<WindowTopX>0</WindowTopX>\n\
<WindowTopY>0</WindowTopY>\n\
<ActiveSheet>0</ActiveSheet>\n\
<ProtectStructure>False</ProtectStructure>\n\
<ProtectWindows>False</ProtectWindows>\n\
</ExcelWorkbook>\n\
<Styles>\n\
<Style ss:ID=\"Default\" ss:Name=\"Normal\">\n\
<Alignment ss:Vertical=\"Bottom\"/>\n\
<Borders/>\n\
<Font ss:FontName=\"Calibri\" x:Family=\"Swiss\" ss:Size=\"11\" ss:Color=\"#000000\"/>\n\
<Interior/>\n\
<NumberFormat/>\n\
<Protection/>\n\
</Style>\n\
<Style ss:ID=\"s62\">\n\
<Font ss:FontName=\"Calibri\" x:Family=\"Swiss\" ss:Size=\"11\" ss:Color=\"#FF0000\"\n\
ss:Bold=\"1\"/>\n\
</Style>\n\
</Styles>\n");
for(int i=0; i < CORE_MAX; i++)
{
// starts a worksheet
fprintf(fp,"<Worksheet ss:Name=\"Sheet%d\">\n\
<Table ss:ExpandedColumnCount=\"%d\" ss:ExpandedRowCount=\"%d\" x:FullColumns=\"1\"\n\
x:FullRows=\"1\" ss:DefaultRowHeight=\"15\">\n", i + 1, BLOCK_MAX + 1, ITERATION_MAX + 4);
fprintf(fp, "<Column ss:Width=\"95.25\"/>\n");
fprintf(fp,"<Row ss:StyleID=\"s62\">\n");
for(int q=0; q < BLOCK_MAX; q++)
{
char s[10];
float f = (float)(pow(Factor,q+1)*pow(2.0, BKMG));
sprintf(s,"%0.3f", f);
if(q == 0)
{
fprintf(fp,"<Cell ss:Index=\"2\"><Data ss:Type=\"Number\">%s</Data></Cell>\n", s);
}
else
{
fprintf(fp,"<Cell><Data ss:Type=\"Number\">%s</Data></Cell>\n", s);
}
}
fprintf(fp,"</Row>\n");
for(int j = 0; j < ITERATION_MAX; j++)
{
fprintf(fp,"<Row>\n");
for(int q = 0; q < BLOCK_MAX; q++)
{
if(q == 0)
{
fprintf(fp,"<Cell ss:Index=\"2\"><Data ss:Type=\"Number\">%f</Data></Cell>\n", outputTable[i][q][j].processTime);
}
else
{
fprintf(fp,"<Cell><Data ss:Type=\"Number\">%f</Data></Cell>\n", outputTable[i][q][j].processTime);
}
}
fprintf(fp,"</Row>\n");
}
fprintf(fp,"<Row>\n");
fprintf(fp,"<Cell ss:StyleID=\"s62\"><Data ss:Type=\"String\">Mean</Data></Cell>\n");
for(int q = 0; q < BLOCK_MAX; q++)
{
fprintf(fp," <Cell ss:Formula=\"=AVERAGE(R[%d]C:R[-1]C)\"><Data ss:Type=\"Number\">0</Data></Cell>\n", -ITERATION_MAX);
}
fprintf(fp,"</Row>\n");
fprintf(fp,"<Row>\n");
fprintf(fp,"<Cell ss:StyleID=\"s62\"><Data ss:Type=\"String\">Standard Deviation</Data></Cell>\n");
for(int q=0; q<BLOCK_MAX; q++)
{
fprintf(fp," <Cell ss:Formula=\"=STDEV(R[%d]C:R[-1]C)\"><Data ss:Type=\"Number\">0</Data></Cell>\n", -(ITERATION_MAX + 1));
}
fprintf(fp,"</Row>\n");
fprintf(fp,"<Row>\n");
fprintf(fp,"<Cell ss:StyleID=\"s62\"><Data ss:Type=\"String\">Add Latency</Data></Cell>\n");
for(int q=0; q<BLOCK_MAX; q++)
{
fprintf(fp," <Cell ss:Formula=\"=R[-2]C/(2^4/4)/%d/%f^%d\"><Data ss:Type=\"Number\">0</Data></Cell>\n",COUNTERS_MAX, Factor, q + 1);
}
fprintf(fp,"</Row>\n");
//end of worksheet
fprintf(fp,"</Table>\n</Worksheet>\n");
}
//end of file
fprintf(fp,"</Workbook>");
fclose(fp);
}
#endif
int
main(int argc, char **argv)
{
mkdir("./Resaults", 0777);
int ret;
unsigned lcore_id;
pthread_attr_t attr;
pthread_mutex_init(&mutexLock_, NULL);
pthread_cond_init(&newIterWaitHandle, NULL);
pthread_cond_init(&readWaitHandle, NULL);
ret = rte_eal_init(argc, argv);
if (ret < 0)
rte_exit(EXIT_FAILURE, "Cannot init EAL\n");
struct lcore_params params[CORE_MAX];
char numT[5];
sprintf(numT, "%d", CORE_MAX);
for(int i = 0; i < CORE_MAX; i++)
{
// Generates some structures to hold information of assinged job of each core
struct data* commonMem = (struct data*)rte_malloc(NULL, sizeof(struct data), 0);
#ifndef EXCEL_OUTPUT
char num[5];
sprintf(num, "%d", i);
char name3[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
strcat(name3, "./Resaults/");
strcat(name3, testNumber);
mkdir(name3, 0777);
strcat(name3, "/R");
strcat(name3, num);
strcat(name3, "_");
strcat(name3, numT);
strcat(name3, "Core");
mkdir(name3, 0777);
char name2[] = {'/','R', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
strcat(name2, num);
strcat(name2, "_");
strcat(name2, names[0]);
strcat(name2, ".txt");
strcat(name3, name2);
params[i].fp = fopen(name3, "w");
#endif
mem_alloc(commonMem, sizes[0], 0);
params[i].valueMem = commonMem;
params[i].index = i;
params[i].iteration = 0;
commonMem->value[i] = NULL;
}
/*
printf("sleep ...\n");
for(int f=0;f<4; f++)
{
sleep(1);
}
*/
/*
double p=0;
for(double f=0;f<1e9; f+=0.3)
{
p+=0.1;
}*/
printf("Starting lcores ...\n");
printf("RTE_MAX_LCORE = %d\n", RTE_MAX_LCORE);
lcore_id = rte_get_next_lcore(-1, 1, 0);
processedCount = 0;
// Ask each core do the funtion lcore_recv
for(int i = 0; i < CORE_MAX; i++)
{
rte_eal_remote_launch((lcore_function_t*)lcore_recv, ¶ms[i], lcore_id);
lcore_id = rte_get_next_lcore(lcore_id, 0, 1);
}
// For each core do the function for "BLOCK_MAX" times
for(int j = 1; j <= BLOCK_MAX; j++)
{
printf("Iteration : %d\n", j);
pthread_mutex_lock(&mutexLock_);
while(processedCount < CORE_MAX)
{
pthread_cond_wait(&readWaitHandle, &mutexLock_);
}
for(int i = 0; i < CORE_MAX; i++)
{
#ifndef EXCEL_OUTPUT
fclose(params[i].fp);
if(j < BLOCK_MAX)
{
char num[5];
sprintf(num, "%d", i);
char name3[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
strcat(name3, "./Resaults/");
strcat(name3, testNumber);
mkdir(name3, 0777);
strcat(name3, "/R");
strcat(name3, num);
strcat(name3, "_");
strcat(name3, numT);
strcat(name3, "Core");
mem_alloc( params[i].valueMem, sizes[j], j);
char name2[] = {'/','R', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
strcat(name2, num);
strcat(name2, "_");
strcat(name2, names[j]);
strcat(name2, ".txt");
strcat(name3, name2);
params[i].fp = fopen(name3,"w");
params[i].iteration = j;
}
#else
mem_alloc( params[i].valueMem, sizes[j], j);
params[i].iteration = j;
#endif
}
if(j < BLOCK_MAX)
{
printf("%d : New Data Added ----------\n", j);
}
else
{
canContinue_ = false;
}
//Signal cores in order to start new iteration
processedCount = 0;
for(int i = 0; i < CORE_MAX; i++)
{
pthread_cond_signal(&newIterWaitHandle);
}
pthread_mutex_unlock(&mutexLock_);
}
printf("Waiting for lcores to finish ...\n");
#ifdef EXCEL_OUTPUT
saveToExcelFile();
#endif
rte_eal_mp_wait_lcore();
return 0;
}
and I run the source run.sh with this command line
./build/app/Mahdi_test -c 0x55 --master-lcore 0
Upvotes: 0
Reputation: 94205
Your way of testing is not test to measure cache latency (and you have TubroBoost turned on, so there is no constant cpu frequency.).
The latency of caches are known, and are measured in cpu cycles, not in ns (caches runs at cpu core frequency); and memory latency is in cycles + ns, because data must be passed through cache hierarchy (cycles) after it was read from memory (ns, memory has its own clocking).
For example for i7-4xxx (Haswell): http://7-cpu.com/cpu/Haswell.html
Intel Haswell
Intel i7-4770 (Haswell), 3.4 GHz (Turbo Boost off), 22 nm. RAM: 32 GB (PC3-12800 cl11 cr2).
- L1 Data Cache Latency = 4 cycles for simple access via pointer
- L1 Data Cache Latency = 5 cycles for access with complex address calculation (size_t n, *p; n = p[n]).
- L2 Cache Latency = 12 cycles
- L3 Cache Latency = 36 cycles
- RAM Latency = 36 cycles + 57 ns
What you have now: adding some "count" constants to several counters (yes, it is very probable that compiler was able to optimize inner loop into d->value[i] += d->count
).
for(uint32_t p = 0; p <= COUNTERS_MAX - 1; p++)
{
for (int i = 0; i < d->count; i++)
{
d->value[i]++;
}
}
What should you have to measure cache latency: https://stackoverflow.com/a/21542939/196561
Widely used classic test for cache latency is iterating over the linked list. ... This method is used by open-source lmbench - in the test lat_mem_rd ... There are sources of lat_mem_rd test from lmbench: https://github.com/foss-for-synopsys-dwc-arc-processors/lmbench/blob/master/src/lat_mem_rd.c
the main test is
#define ONE p = (char **)*p;
#define FIVE ONE ONE ONE ONE ONE
#define TEN FIVE FIVE
#define FIFTY TEN TEN TEN TEN TEN
#define HUNDRED FIFTY FIFTY
void
benchmark_loads(iter_t iterations, void *cookie)
{
struct mem_state* state = (struct mem_state*)cookie;
register char **p = (char**)state->p[0];
register size_t i;
register size_t count = state->len / (state->line * 100) + 1;
while (iterations-- > 0) {
for (i = 0; i < count; ++i) {
HUNDRED;
}
}
use_pointer((void *)p);
state->p[0] = (char*)p;
}
So, after deciphering the macro we do a lot of linear operations like:
p = (char**) *p; // (in intel syntax) == mov eax, [eax]
p = (char**) *p;
p = (char**) *p;
.... // 100 times total
p = (char**) *p;
As says the man page http://www.bitmover.com/lmbench/lat_mem_rd.8.html
The benchmark runs as two nested loops. The outer loop is the stride size. The inner loop is the array size. For each array size, the benchmark creates a ring of pointers that point forward one stride. Traversing the array is done by
p = (char **)*p;
Upvotes: 1