Reputation: 2118
How do I convert data from a Scikit-learn Bunch object to a Pandas DataFrame?
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
print(type(data))
data1 = pd. # Is there a Pandas method to accomplish this?
Upvotes: 173
Views: 211555
Reputation: 1
from sklearn.datasets import load_iris
iris = load_iris(as_frame=True)
iris = iris['frame']
iris.head()
Upvotes: 0
Reputation: 336
By far the simplest solution:
from sklearn.datasets import load_iris
iris = load_iris(as_frame=True)
df = iris["frame"] # will also contain the target column
More information: https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_iris.html
Upvotes: 1
Reputation: 9762
So many answers, so much noise... The following is simple and uses pd.Categorical
for the target variable.
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
df["species"] = pd.Categorical.from_codes(iris.target, iris.target_names)
# sepal_length sepal_width petal_length petal_width species
# 0 5.1 3.5 1.4 0.2 setosa
# 1 4.9 3.0 1.4 0.2 setosa
# 2 4.7 3.2 1.3 0.2 setosa
# 3 4.6 3.1 1.5 0.2 setosa
# 4 5.0 3.6 1.4 0.2 setosa
# .. ... ... ... ... ...
# 145 6.7 3.0 5.2 2.3 virginica
# 146 6.3 2.5 5.0 1.9 virginica
# 147 6.5 3.0 5.2 2.0 virginica
# 148 6.2 3.4 5.4 2.3 virginica
# 149 5.9 3.0 5.1 1.8 virginica
#
# [150 rows x 5 columns]
To extract the integer codes of the target variable, use the cat
accessor.
df.species.cat.codes
# 0 0
# 1 0
# 2 0
# 3 0
# 4 0
# ..
# 145 2
# 146 2
# 147 2
# 148 2
# 149 2
# Length: 150, dtype: int8
Upvotes: 1
Reputation: 21
A more simpler and approachable manner I tried
import pandas as pd
from sklearn import datasets
iris = load_iris()
X= pd.DataFrame(iris['data'], columns= iris['feature_names'])
y = pd.DataFrame(iris['target'],columns=['target'])
df = X.join(y)
Upvotes: 1
Reputation: 100
This is an easy way and works with majority of datasets in sklearn
import pandas as pd
from sklearn import datasets
# download iris data set
iris = datasets.load_iris()
# load feature columns to DataFrame
df = pd.DataFrame(data=iris.data, columns=iris.feature_names)
# add a column to df called 'target_c' then asign the target data of iris data
df['target_c'] = iris.target
# view final DataFrame
df.head()
Upvotes: 1
Reputation: 708
Many of the solutions are either missing column names or the species target names. This solution provides target_name labels.
@Ankit-mathanker's solution works, however it iterates the Dataframe Series 'target_names' to substitute the iris species for integer identifiers.
Based on the adage 'Don't iterate a Dataframe if you don't have to,' the following solution utilizes pd.replace() to more concisely accomplish the replacement.
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris['data'], columns = iris['feature_names'])
df['target'] = pd.Series(iris['target'], name = 'target_values')
df['target_name'] = df['target'].replace([0,1,2],
['iris-' + species for species in iris['target_names'].tolist()])
df.head(3)
sepal length (cm) | sepal width (cm) | petal length (cm) | petal width (cm) | target | target_name | |
---|---|---|---|---|---|---|
0 | 5.1 | 3.5 | 1.4 | 0.2 | 0 | iris-setosa |
1 | 4.9 | 3.0 | 1.4 | 0.2 | 0 | iris-setosa |
2 | 4.7 | 3.2 | 1.3 | 0.2 | 0 | iris-setosa |
Upvotes: 8
Reputation: 1431
from sklearn.datasets import load_iris
import pandas as pd
data = load_iris()
df = pd.DataFrame(data=data.data, columns=data.feature_names)
df.head()
This tutorial maybe of interest: http://www.neural.cz/dataset-exploration-boston-house-pricing.html
Upvotes: 127
Reputation: 1004
Plenty of good responses to this question; I've added my own below.
import pandas as pd
from sklearn.datasets import load_iris
df = pd.DataFrame(
# load all 4 dimensions of the dataframe EXCLUDING species data
load_iris()['data'],
# set the column names for the 4 dimensions of data
columns=load_iris()['feature_names']
)
# we create a new column called 'species' with 150 rows of numerical data 0-2 signifying a species type.
# Our column `species` should have data such `[0, 0, 1, 2, 1, 0]` etc.
df['species'] = load_iris()['target']
# we map the numerical data to string data for species type
df['species'] = df['species'].map({
0 : 'setosa',
1 : 'versicolor',
2 : 'virginica'
})
df.head()
load_iris['feature_names]
has only 4 columns (sepal length, sepal width, petal length, petal width); moreover, the load_iris['data']
only contains data for those feature_names
mentioned above.load_iris()['target_names'] == array(['setosa', 'versicolor', 'virginica']
.load_iris()['target'].nunique() == 3
species
that used the map
function to convert numerical data 0-2
into 3 types of string data signifying the iris species.Upvotes: 1
Reputation: 17154
You can use the parameter as_frame=True
to get pandas dataframes.
from sklearn import datasets
X,y = datasets.load_iris(return_X_y=True) # numpy arrays
dic_data = datasets.load_iris(as_frame=True)
print(dic_data.keys())
df = dic_data['frame'] # pandas dataframe data + target
df_X = dic_data['data'] # pandas dataframe data only
ser_y = dic_data['target'] # pandas series target only
dic_data['target_names'] # numpy array
from sklearn import datasets
fnames = [ i for i in dir(datasets) if 'load_' in i]
print(fnames)
fname = 'load_boston'
loader = getattr(datasets,fname)()
df = pd.DataFrame(loader['data'],columns= loader['feature_names'])
df['target'] = loader['target']
df.head(2)
Upvotes: 20
Reputation: 121
You can use pd.DataFrame constructor, giving a numpy array (data) and a list of the names of the columns (columns). To have everything in one DataFrame, you can concatenate the features and the target into one numpy array with np.c_[...] (note the square brackets and not parenthesis). Also, you can have some trouble if you don't convert the feature names (iris['feature_names']) to a list before concatenation:
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= list(iris['feature_names']) + ['target'])
Upvotes: 1
Reputation: 173
This is easy method worked for me.
boston = load_boston()
boston_frame = pd.DataFrame(data=boston.data, columns=boston.feature_names)
boston_frame["target"] = boston.target
But this can applied to load_iris as well.
Upvotes: 9
Reputation: 1
from sklearn.datasets import load_iris
import pandas as pd
iris_dataset = load_iris()
datasets = pd.DataFrame(iris_dataset['data'], columns =
iris_dataset['feature_names'])
target_val = pd.Series(iris_dataset['target'], name =
'target_values')
species = []
for val in target_val:
if val == 0:
species.append('iris-setosa')
if val == 1:
species.append('iris-versicolor')
if val == 2:
species.append('iris-virginica')
species = pd.Series(species)
datasets['target'] = target_val
datasets['target_name'] = species
datasets.head()
Upvotes: 0
Reputation: 51
Here's another integrated method example maybe helpful.
from sklearn.datasets import load_iris
iris_X, iris_y = load_iris(return_X_y=True, as_frame=True)
type(iris_X), type(iris_y)
The data iris_X are imported as pandas DataFrame and the target iris_y are imported as pandas Series.
Upvotes: 3
Reputation: 11399
Otherwise use seaborn data sets which are actual pandas data frames:
import seaborn
iris = seaborn.load_dataset("iris")
type(iris)
# <class 'pandas.core.frame.DataFrame'>
Compare with scikit learn data sets:
from sklearn import datasets
iris = datasets.load_iris()
type(iris)
# <class 'sklearn.utils.Bunch'>
dir(iris)
# ['DESCR', 'data', 'feature_names', 'filename', 'target', 'target_names']
Upvotes: 11
Reputation: 8150
The API is a little cleaner than the responses suggested. Here, using as_frame
and being sure to include a response column as well.
import pandas as pd
from sklearn.datasets import load_wine
features, target = load_wine(as_frame=True).data, load_wine(as_frame=True).target
df = features
df['target'] = target
df.head(2)
Upvotes: 2
Reputation: 1086
As of version 0.23, you can directly return a DataFrame using the as_frame
argument.
For example, loading the iris data set:
from sklearn.datasets import load_iris
iris = load_iris(as_frame=True)
df = iris.data
In my understanding using the provisionally release notes, this works for the breast_cancer, diabetes, digits, iris, linnerud, wine and california_houses data sets.
Upvotes: 4
Reputation: 161
I took couple of ideas from your answers and I don't know how to make it shorter :)
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris['feature_names'])
df['target'] = iris['target']
This gives a Pandas DataFrame with feature_names plus target as columns and RangeIndex(start=0, stop=len(df), step=1). I would like to have a shorter code where I can have 'target' added directly.
Upvotes: 1
Reputation: 141
Basically what you need is the "data", and you have it in the scikit bunch, now you need just the "target" (prediction) which is also in the bunch.
So just need to concat these two to make the data complete
data_df = pd.DataFrame(cancer.data,columns=cancer.feature_names)
target_df = pd.DataFrame(cancer.target,columns=['target'])
final_df = data_df.join(target_df)
Upvotes: 2
Reputation: 1
One of the best ways:
data = pd.DataFrame(digits.data)
Digits is the sklearn dataframe and I converted it to a pandas DataFrame
Upvotes: 0
Reputation: 39
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
X = iris['data']
y = iris['target']
iris_df = pd.DataFrame(X, columns = iris['feature_names'])
iris_df.head()
Upvotes: 0
Reputation: 7779
Whatever TomDLT answered it may not work for some of you because
data1 = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['target'])
because iris['feature_names'] returns you a numpy array. In numpy array you can't add an array and a list ['target'] by just + operator. Hence you need to convert it into a list first and then add.
You can do
data1 = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= list(iris['feature_names']) + ['target'])
This will work fine tho..
Upvotes: 0
Reputation: 2123
This snippet is only syntactic sugar built upon what TomDLT and rolyat have already contributed and explained. The only differences would be that load_iris
will return a tuple instead of a dictionary and the columns names are enumerated.
df = pd.DataFrame(np.c_[load_iris(return_X_y=True)])
Upvotes: 1
Reputation: 1349
TOMDLt's solution is not generic enough for all the datasets in scikit-learn. For example it does not work for the boston housing dataset. I propose a different solution which is more universal. No need to use numpy as well.
from sklearn import datasets
import pandas as pd
boston_data = datasets.load_boston()
df_boston = pd.DataFrame(boston_data.data,columns=boston_data.feature_names)
df_boston['target'] = pd.Series(boston_data.target)
df_boston.head()
As a general function:
def sklearn_to_df(sklearn_dataset):
df = pd.DataFrame(sklearn_dataset.data, columns=sklearn_dataset.feature_names)
df['target'] = pd.Series(sklearn_dataset.target)
return df
df_boston = sklearn_to_df(datasets.load_boston())
Upvotes: 88
Reputation: 18208
Other way to combine features and target variables can be using np.column_stack
(details)
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
data = load_iris()
df = pd.DataFrame(np.column_stack((data.data, data.target)), columns = data.feature_names+['target'])
print(df.head())
Result:
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
0 5.1 3.5 1.4 0.2 0.0
1 4.9 3.0 1.4 0.2 0.0
2 4.7 3.2 1.3 0.2 0.0
3 4.6 3.1 1.5 0.2 0.0
4 5.0 3.6 1.4 0.2 0.0
If you need the string label for the target
, then you can use replace
by convertingtarget_names
to dictionary
and add a new column:
df['label'] = df.target.replace(dict(enumerate(data.target_names)))
print(df.head())
Result:
sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target label
0 5.1 3.5 1.4 0.2 0.0 setosa
1 4.9 3.0 1.4 0.2 0.0 setosa
2 4.7 3.2 1.3 0.2 0.0 setosa
3 4.6 3.1 1.5 0.2 0.0 setosa
4 5.0 3.6 1.4 0.2 0.0 setosa
Upvotes: 6
Reputation: 1007
Took me 2 hours to figure this out
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
##iris.keys()
df= pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['target'])
df['species'] = pd.Categorical.from_codes(iris.target, iris.target_names)
Get back the species for my pandas
Upvotes: 19
Reputation: 151
Just as an alternative that I could wrap my head around much easier:
data = load_iris()
df = pd.DataFrame(data['data'], columns=data['feature_names'])
df['target'] = data['target']
df.head()
Basically instead of concatenating from the get go, just make a data frame with the matrix of features and then just add the target column with data['whatvername'] and grab the target values from the dataset
Upvotes: 15
Reputation: 1585
This works for me.
dataFrame = pd.dataFrame(data = np.c_[ [iris['data'],iris['target'] ],
columns=iris['feature_names'].tolist() + ['target'])
Upvotes: 6
Reputation:
Working off the best answer and addressing my comment, here is a function for the conversion
def bunch_to_dataframe(bunch):
fnames = bunch.feature_names
features = fnames.tolist() if isinstance(fnames, np.ndarray) else fnames
features += ['target']
return pd.DataFrame(data= np.c_[bunch['data'], bunch['target']],
columns=features)
Upvotes: 1
Reputation: 4505
Manually, you can use pd.DataFrame
constructor, giving a numpy array (data
) and a list of the names of the columns (columns
).
To have everything in one DataFrame, you can concatenate the features and the target into one numpy array with np.c_[...]
(note the []
):
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
# save load_iris() sklearn dataset to iris
# if you'd like to check dataset type use: type(load_iris())
# if you'd like to view list of attributes use: dir(load_iris())
iris = load_iris()
# np.c_ is the numpy concatenate function
# which is used to concat iris['data'] and iris['target'] arrays
# for pandas column argument: concat iris['feature_names'] list
# and string list (in this case one string); you can make this anything you'd like..
# the original dataset would probably call this ['Species']
data1 = pd.DataFrame(data= np.c_[iris['data'], iris['target']],
columns= iris['feature_names'] + ['target'])
Upvotes: 209
Reputation: 1321
There might be a better way but here is what I have done in the past and it works quite well:
items = data.items() #Gets all the data from this Bunch - a huge list
mydata = pd.DataFrame(items[1][1]) #Gets the Attributes
mydata[len(mydata.columns)] = items[2][1] #Adds a column for the Target Variable
mydata.columns = items[-1][1] + [items[2][0]] #Gets the column names and updates the dataframe
Now mydata will have everything you need - attributes, target variable and columnnames
Upvotes: 0