Reputation: 103
I am using the PyGMO package for Python, for multi-objective optimisation. I am unable to fix the dimension of the fitness function in the constructor, and the documentation is not very descriptive either. I am wondering if anyone here has had experience with PyGMO in the past: this could be fairly simple.
I try to construct a minimum example below:
from PyGMO.problem import base
from PyGMO import algorithm, population
import numpy as np
import matplotlib.pyplot as plt
class my_problem(base):
def __init__(self, fdim=2):
NUM_PARAMS = 4
super(my_problem, self).__init__(NUM_PARAMS)
self.set_bounds(0.01, 100)
def _objfun_impl(self, K):
E1 = K[0] + K[2]
E2 = K[1] + K[3]
return (E1, E2, )
if __name__ == '__main__':
prob = my_problem() # Create the problem
print (prob)
algo = algorithm.sms_emoa(gen=100)
pop = population(prob, 50)
pop = algo.evolve(pop)
F = np.array([ind.cur_f for ind in pop]).T
plt.scatter(F[0], F[1])
plt.xlabel("$E_1$")
plt.ylabel("$E_2$")
plt.show()
fdim=2
above is a failed attempt to set the fitness dimension. The code fails with the following error:
ValueError: ..\..\src\problem\base.cpp,584: fitness dimension was changed inside objfun_impl().
I'd be grateful if someone can help figure this out. Thanks!
Upvotes: 2
Views: 1379
Reputation: 5587
Are you looking at the correct documentation?
There is no fdim
(which anyway does nothing in your example since it is only a local variable and is not used). But there is n_obj
:
n_obj: number of objectives. Defaults to 1
So, I think you want something like (corrected thanks to @Distopia):
#(...)
def __init__(self, fdim=2):
NUM_PARAMS = 4
super(my_problem, self).__init__(NUM_PARAMS, 0, fdim)
self.set_bounds(0.01, 100)
#(...)
Upvotes: 1
Reputation: 319
I modified their example and this seemed to work for me.
#(...)
def __init__(self, fdim=2):
NUM_PARAMS = 4
# We call the base constructor as 'dim' dimensional problem, with 0 integer parts and 2 objectives.
super(my_problem, self).__init__(NUM_PARAMS,0,fdim)
self.set_bounds(0.01, 100)
#(...)
Upvotes: 1