Reputation: 1124
I have a template class of the form:
template<typename ContainerType>
class ConfIntParamStat {
public:
typedef typename ContainerType::Type Type;
...
private:
void sample(int iteration) {...}
}
I would like to create a specific version of the function sample for the case when ContainerType is a Vector. Where Vector itself is a template class, but I do not know which type of values this Vector holds.
My intuition was to create this in the header file:
template<typename Type>
ConfIntParamStat<Vector<Type> >::sample(int iteration) {
...
}
But it does not compile, and the error from clang is:
error: nested name specifier 'ConfIntParamStat<Vector<Type> >::' for declaration does not refer into a class, class template or class template partial specialization
Is it possible using another syntax ?
Upvotes: 6
Views: 5308
Reputation: 21560
If you didnt want to specialize the template and were looking for a member only specialization try the following
#include <iostream>
#include <vector>
using namespace std;
template <typename ContainerType>
class Something {
public:
void do_something(int);
template <typename Which>
struct do_something_implementation {
void operator()() {
cout << "general implementation" << endl;
}
};
template <typename Which>
struct do_something_implementation<vector<Which>> {
void operator()() {
cout << "specialized implementation for vectors" << endl;
}
};
};
template <typename ContainerType>
void Something<ContainerType>::do_something(int) {
do_something_implementation<ContainerType>{}();
}
int main() {
Something<double> something;
something.do_something(1);
return 0;
}
If your intent is to specialize a function, I would just overload the function like so
#include <iostream>
#include <vector>
using namespace std;
template <typename ContainerType>
class Something {
public:
void do_something(int);
template <typename Type>
void do_something(const vector<Type>&);
};
template <typename ContainerType>
void Something<ContainerType>::do_something(int) {
cout << "Called the general method for do_something" << endl;
}
template <typename ContainerType>
template <typename Type>
void Something<ContainerType>::do_something(const vector<Type>&) {
cout << "Called the specialised method" << endl;
}
int main() {
vector<int> vec{1, 2, 3};
Something<double> something;
something.do_something(1);
something.do_something(vec);
return 0;
}
This is mostly why full/explicit function template specializations are not required. Overloading allows for almost the same effects!
Note This is a great article related to your question! http://www.gotw.ca/publications/mill17.htm
Upvotes: 2
Reputation: 13988
You could make use of the overloading mechanism and tag dispatch:
#include <vector>
template <class T>
struct Tag { };
template<typename ContainerType>
class ConfIntParamStat {
public:
typedef typename ContainerType::value_type Type;
//...
// private:
void sample(int iteration) {
sample_impl(Tag<ContainerType>(), iteration);
}
template <class T>
void sample_impl(Tag<std::vector<T> >, int iteration) {
//if vector
}
template <class T>
void sample_impl(Tag<T>, int iteration) {
//if not a vector
}
};
int main() {
ConfIntParamStat<std::vector<int> > cips;
cips.sample(1);
}
As skypjack mentioned this approach has a little draw when using const. If you are not using c++11
(I suspect you dont because you use > >
syntax for nested templates) you could workaround this as follows:
#include <iostream>
#include <vector>
template <class T>
struct Tag { };
template <class T>
struct Decay {
typedef T Type;
};
template <class T>
struct Decay<const T> {
typedef T Type;
};
template<typename ContainerType>
class ConfIntParamStat {
public:
typedef typename ContainerType::value_type Type;
//...
// private:
void sample(int iteration) {
sample_impl(Tag<typename Decay<ContainerType>::Type>(), iteration);
}
template <class T>
void sample_impl(Tag<std::vector<T> >, int iteration) {
std::cout << "vector specialization" << std::endl;
}
template <class T>
void sample_impl(Tag<T>, int iteration) {
std::cout << "general" << std::endl;
}
};
int main() {
ConfIntParamStat<const std::vector<int> > cips;
cips.sample(1);
}
Upvotes: 2
Reputation: 69922
Another way to approach this is composition.
The act of adding a sample
can be thought of as a component of the implementation of the class. If we remove the implementation of adding a sample into this template class, we can then partially specialise only this discrete component.
For example:
#include <vector>
//
// default implementation of the sample component
//
template<class Outer>
struct implements_sample
{
using sample_implementation = implements_sample;
// implements one function
void sample(int iteration) {
// default actions
auto self = static_cast<Outer*>(this);
// do something with self
// e.g. self->_samples.insert(self->_samples.end(), iteration);
}
};
// refactor the container to be composed of component(s)
template<typename ContainerType>
class ConfIntParamStat
: private implements_sample<ConfIntParamStat<ContainerType>>
{
using this_class = ConfIntParamStat<ContainerType>;
public:
// I have added a public interface
void activate_sample(int i) { sample(i); }
// here we give the components rights over this class
private:
friend implements_sample<this_class>;
using this_class::sample_implementation::sample;
ContainerType _samples;
};
//
// now specialise the sample function component for std::vector
//
template<class T, class A>
struct implements_sample<ConfIntParamStat<std::vector<T, A>>>
{
using sample_implementation = implements_sample;
void sample(int iteration) {
auto self = static_cast<ConfIntParamStat<std::vector<T, A>>*>(this);
// do something with self
self->_samples.push_back(iteration);
}
};
int main()
{
ConfIntParamStat< std::vector<int> > cip;
cip.activate_sample(1);
cip.activate_sample(2);
}
Upvotes: 1