Reputation: 1944
I have a data frame which looks like this
data <- data.frame(ID = c(1,2,3,4,5),A = c(1,4,NA,NA,4),B = c(1,2,NA,NA,NA),C= c(1,2,3,4,NA))
> data
ID A B C
1 1 1 1 1
2 2 4 2 2
3 3 NA NA 3
4 4 NA NA 4
5 5 4 NA NA
I have a mapping file as well which looks like this
reference <- data.frame(Names = c("A","B","C"),Vals = c(2,5,6))
> reference
Names Vals
1 A 2
2 B 5
3 C 6
I want my data file to be modified using the reference file in a way which would yield me this final data frame
> final_data
ID A B C
1 1 1 1 1
2 2 4 2 2
3 3 2 5 3
4 4 2 5 4
5 5 4 5 6
What is the fastest way I can acheive this in R?
Upvotes: 0
Views: 435
Reputation: 35314
One approach is to compute a logical matrix of the target columns capturing which cells are NA. We can then index-assign the NA cells with the replacement values. The tricky part is ensuring the replacement vector aligns with the indexed cells:
im <- is.na(data[as.character(reference$Names)]);
data[as.character(reference$Names)][im] <- rep(reference$Vals,colSums(im));
data;
## ID A B C
## 1 1 1 1 1
## 2 2 4 2 2
## 3 3 2 5 3
## 4 4 2 5 4
## 5 5 4 5 6
Upvotes: 3
Reputation: 886938
We can do this with Map
data[as.character(reference$Names)] <- Map(function(x,y) replace(x,
is.na(x), y), data[as.character(reference$Names)], reference$Vals)
data
# ID A B C
#1 1 1 1 1
#2 2 4 2 2
#3 3 2 5 3
#4 4 2 5 4
#5 5 4 5 6
EDIT: Based on @thelatemail's comments.
NOTE: NO external packages used
As we are looking for efficient solution, another approach would be set
from data.table
library(data.table)
setDT(data)
v1 <- as.character(reference$Names)
for(j in seq_along(v1)){
set(data, i = which(is.na(data[[v1[j]]])), j= v1[j], value = reference$Vals[j] )
}
NOTE: Only a single efficient external package used.
Upvotes: 4
Reputation: 43334
If reference
was the same wide format as data
, dplyr's new (v. 0.5.0) coalesce
function is built for replacing NA
s; together with purrr
, which offers alternate notations for *apply
functions, it makes the process very simple:
library(dplyr)
# spread reference to wide, add ID column for mapping
reference_wide <- data.frame(ID = NA_real_, tidyr::spread(reference, Names, Vals))
reference_wide
# ID A B C
# 1 NA 2 5 6
# now coalesce the two column-wise and return a df
purrr::map2_df(data, reference_wide, coalesce)
# Source: local data frame [5 x 4]
#
# ID A B C
# <dbl> <dbl> <dbl> <dbl>
# 1 1 1 1 1
# 2 2 4 2 2
# 3 3 2 5 3
# 4 4 2 5 4
# 5 5 4 5 6
Upvotes: 0