Reputation: 184
I have two sets of interval data I.E.
Start End Type1 Type2
0 2 L NULL
2 5 L NULL
5 7 L NULL
7 10 L NULL
2 3 NULL S
3 5 NULL S
5 8 NULL S
11 12 NULL S
What I'd like to do is merge these sets into one. This seems possible by utilising an islands and gaps solution but due to the non-continuous nature of the intervals I'm not sure how to go about applying it... The output I'm expecting would be:
Start End Type1 Type2
0 2 L NULL
2 3 L S
3 5 L S
5 7 L S
7 8 L S
8 10 L NULL
11 12 NULL S
Anyone out there done something like this before??? Thanks!
Create script below:
CREATE TABLE Table1
([Start] int, [End] int, [Type1] varchar(4), [Type2] varchar(4))
;
INSERT INTO Table1
([Start], [End], [Type1], [Type2])
VALUES
(0, 2, 'L', NULL),
(2, 3, NULL, 'S'),
(2, 5, 'L', NULL),
(3, 5, NULL, 'S'),
(5, 7, 'L', NULL),
(5, 8, NULL, 'S'),
(7, 10, 'L', NULL),
(11, 12, NULL, 'S')
;
Upvotes: 3
Views: 177
Reputation: 32703
I assume that Start
is inclusive, End
is exclusive and given intervals do not overlap.
CTE_Number
is a table of numbers. Here it is generated on the fly. I have it as a permanent table in my database.
CTE_T1
and CTE_T2
expand each interval into the corresponding number of rows using a table of numbers. For example, interval [2,5)
generates rows with Values
2
3
4
This is done twice: for Type1
and Type2
.
Results for Type1
and Type2
are FULL JOINed
together on Value
.
Finally, a gaps-and-islands pass groups/collapses intervals back.
Run the query step-by-step, CTE-by-CTE and examine intermediate results to understand how it works.
Sample data
I added few rows to illustrate a case when there is a gap between values.
DECLARE @Table1 TABLE
([Start] int, [End] int, [Type1] varchar(4), [Type2] varchar(4))
;
INSERT INTO @Table1 ([Start], [End], [Type1], [Type2]) VALUES
( 0, 2, 'L', NULL),
( 2, 3, NULL, 'S'),
( 2, 5, 'L', NULL),
( 3, 5, NULL, 'S'),
( 5, 7, 'L', NULL),
( 5, 8, NULL, 'S'),
( 7, 10, 'L', NULL),
(11, 12, NULL, 'S'),
(15, 20, 'L', NULL),
(15, 20, NULL, 'S');
Query
WITH
e1(n) AS
(
SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL
SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL
SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1 UNION ALL SELECT 1
) -- 10
,e2(n) AS (SELECT 1 FROM e1 CROSS JOIN e1 AS b) -- 10*10
,e3(n) AS (SELECT 1 FROM e1 CROSS JOIN e2) -- 10*100
,CTE_Numbers
AS
(
SELECT ROW_NUMBER() OVER (ORDER BY n) AS Number
FROM e3
)
,CTE_T1
AS
(
SELECT
T1.[Start] + CA.Number - 1 AS Value
,T1.Type1
FROM
@Table1 AS T1
CROSS APPLY
(
SELECT TOP(T1.[End] - T1.[Start]) CTE_Numbers.Number
FROM CTE_Numbers
ORDER BY CTE_Numbers.Number
) AS CA
WHERE
T1.Type1 IS NOT NULL
)
,CTE_T2
AS
(
SELECT
T2.[Start] + CA.Number - 1 AS Value
,T2.Type2
FROM
@Table1 AS T2
CROSS APPLY
(
SELECT TOP(T2.[End] - T2.[Start]) CTE_Numbers.Number
FROM CTE_Numbers
ORDER BY CTE_Numbers.Number
) AS CA
WHERE
T2.Type2 IS NOT NULL
)
,CTE_Values
AS
(
SELECT
ISNULL(CTE_T1.Value, CTE_T2.Value) AS Value
,CTE_T1.Type1
,CTE_T2.Type2
,ROW_NUMBER() OVER (ORDER BY ISNULL(CTE_T1.Value, CTE_T2.Value)) AS rn
FROM
CTE_T1
FULL JOIN CTE_T2 ON CTE_T2.Value = CTE_T1.Value
)
,CTE_Groups
AS
(
SELECT
Value
,Type1
,Type2
,rn
,ROW_NUMBER() OVER
(PARTITION BY rn - Value, Type1, Type2 ORDER BY Value) AS rn2
FROM CTE_Values
)
SELECT
MIN(Value) AS [Start]
,MAX(Value) + 1 AS [End]
,Type1
,Type2
FROM CTE_Groups
GROUP BY rn-rn2, Type1, Type2
ORDER BY [Start];
Result
+-------+-----+-------+-------+
| Start | End | Type1 | Type2 |
+-------+-----+-------+-------+
| 0 | 2 | L | NULL |
| 2 | 8 | L | S |
| 8 | 10 | L | NULL |
| 11 | 12 | NULL | S |
| 15 | 20 | L | S |
+-------+-----+-------+-------+
Upvotes: 1
Reputation: 29677
First getting all the numbers of start and end via a Union.
Then joining those numbers on both the 'L' and 'S' records.
Uses a table variable for the test.
DECLARE @Table1 TABLE (Start int, [End] int, Type1 varchar(4), Type2 varchar(4));
INSERT INTO @Table1 (Start, [End], Type1, Type2)
VALUES (0, 2, 'L', NULL),(2, 3, NULL, 'S'),(2, 5, 'L', NULL),(3, 5, NULL, 'S'),
(5, 7, 'L', NULL),(5, 8, NULL, 'S'),(7, 10, 'L', NULL),(11, 12, NULL, 'S');
select
n.Num as Start,
(case when s.[End] is null or l.[End] <= s.[End] then l.[End] else s.[End] end) as [End],
l.Type1,
s.Type2
from
(select Start as Num from @Table1 union select [End] from @Table1) n
left join @Table1 l on (n.Num >= l.Start and n.Num < l.[End] and l.Type1 = 'L')
left join @Table1 s on (n.Num >= s.Start and n.Num < s.[End] and s.Type2 = 'S')
where (l.Start is not null or s.Start is not null)
order by Start, [End];
Output:
Start End Type1 Type2
0 2 L NULL
2 3 L S
3 5 L S
5 7 L S
7 8 L S
8 10 L NULL
11 12 NULL S
Upvotes: 0
Reputation: 16978
A step-by-step way is:
-- Finding all break points
;WITH breaks AS (
SELECT Start
FROM yourTable
UNION
SELECT [End]
FROM yourTable
) -- Finding Possible Ends
, ends AS (
SELECT Start
, (SELECT Min([End]) FROM yourTable WHERE yourTable.Start = breaks.Start) End1
, (SELECT Max([End]) FROM yourTable WHERE yourTable.Start < breaks.Start) End2
FROM breaks
) -- Finding periods
, periods AS (
SELECT Start,
CASE
WHEN End1 > End2 And End2 > Start THEN End2
WHEN End1 IS NULL THEN End2
ELSE End1
END [End]
FROM Ends
WHERE NOT(End1 IS NULL AND Start = End2)
) -- Generating results
SELECT p.Start, p.[End], Max(Type1) Type1, Max(Type2) Type2
FROM periods p, yourTable t
WHERE p.start >= t.Start AND p.[End] <= t.[End]
GROUP BY p.Start, p.[End];
In above query some situations may not fit at analyzing all of them, you can improve it as you want ;).
Upvotes: 0