Reputation: 105
I have a dataframe of time data in the format
hh:mm:ss
hh:mm:ss
(type string)
I need to be able to sum the values (to acquire total time) in a few of the columns. I'm wondering if anyone has any recommendations on the best way to do this and get the sum in the same format.
Upvotes: 2
Views: 18980
Reputation: 862511
You can use to_timedelta
with sum
:
import pandas as pd
df = pd.DataFrame({'A': ['18:22:28', '12:15:10']})
df['A'] = pd.to_timedelta(df.A)
print (df)
A
0 18:22:28
1 12:15:10
print (df.dtypes)
A timedelta64[ns]
dtype: object
print (df.A.sum())
1 days 06:37:38
Upvotes: 6
Reputation: 3731
Maybe try using datetime.timedelta
?
import re
from datetime import timedelta
_TIME_RE = re.compile(r'(\d+):(\d+):(\d+)')
def parse_timedelta(line):
# Invalid lines (such as blank) will be considered 0 seconds
m = _TIME_RE.match(line)
if m is None:
return timedelta()
hours, minutes, seconds = [int(i) for i in m.groups()]
return timedelta(hours=hours, minutes=minutes, seconds=seconds)
def format_timedelta(delta):
hours, rem = divmod(delta.seconds + delta.days * 86400, 3600)
minutes, seconds = divmod(rem, 60)
return '{:02}:{:02}:{:02}'.format(hours, minutes, seconds)
If data
is a list containing the lines:
print(format_timedelta(sum(parse_timedelta(line) for line in data)))
Upvotes: 1
Reputation: 2228
You can do this using timedelta:
import pandas as pd
import datetime
data = {'t1':['01:15:31',
'00:47:15'],
't2':['01:13:02',
'00:51:33']
}
def make_delta(entry):
h, m, s = entry.split(':')
return datetime.timedelta(hours=int(h), minutes=int(m), seconds=int(s))
df = pd.DataFrame(data)
df = df.applymap(lambda entry: make_delta(entry))
df['elapsed'] = df['t1'] + df['t2']
In [23]: df
Out[23]:
t1 t2 elapsed
0 01:15:31 01:13:02 02:28:33
1 00:47:15 00:51:33 01:38:48
Edit: I see you need to do this by column, not row. In that case do the same thing, but:
In [24]: df['t1'].sum()
Out[24]: Timedelta('0 days 02:02:46')
Upvotes: 8