Reputation: 159
I have a DataFrame like this:
upper level1 level2
lower name name
1 Mary Tom
2 ... ...
What should I do if I want to add another column under level1
? For example
upper level1 level2
lower name age name
1 Mary 13 Tom
2 ... ... ...
I can access data with df['level1'].loc[:,'name']
, but I don't know how to add/remove a column.
If I just use df.level1['age']=1
, Python returns a copy warning and nothing changed in the DataFrame:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy
if __name__ == '__main__':
Upvotes: 4
Views: 111
Reputation: 375395
You can use tuple in the assignment:
In [11]: df[('level1', 'age')] = 13 # or a Series here, rather than a number
In [12]: df
Out[12]:
upper level1 level2 level1
lower name name age
0 1 Mary Tom 13
1 2 ... ... 13
Upvotes: 4