Reputation: 553
I'd like to calculate RMSE in ALS model, i find code like this:
val ratings = data.map(_.split(',') match {
case Array(user,item,rate)
=>
Rating(user.toLong,item.toInt,rate.toFloat)
})
val ratingsDF= ratings.toDF
val model = new ALS().setRank(3).setMaxIter(10).fit(ratingsDF)
val predictions = model.transform(ratingsDF)
val evaluator = new RegressionEvaluator().setMetricName("rmse").setLabelCol("rating").setPredictionCol("prediction")
val rmse = evaluator.evaluate(predictions)
System.out.println("Root-mean-square error = " + rose)
However, i get "NaN" . I wonder if the method i use is wrong or it is the problem with the data itself. If it is wrong with the code, what is the right way to calculate the RMSE? I only find method like:
var predictions = model.predict(usersProducts).map { case Rating(user, product, rate) => ((user, product), rate) }
val ratesAndPreds = ratings.map { case Rating(user, product, rate) => ((user, product), rate) }.join(predictions)
val rmse= math.sqrt(ratesAndPreds.map { case ((user, product), (r1, r2)) => val err = (r1 - r2) err * err }.mean())println(s"RMSE = $rmse")
This cannot be used here. How to do it?
Upvotes: 4
Views: 1510
Reputation: 24606
This appears to be a defect. For more information, have a look at this spark JIRA: https://issues.apache.org/jira/browse/SPARK-14489
When building a Spark ML pipeline containing an ALS estimator, the metrics "rmse", "mse", "r2" and "mae" all return NaN.
Upvotes: 1