Reputation:
I'm having trouble understanding the meaning of a function f(x) representing the number of operations performed in some code.
int sum = 0; // + 1
for (int i = 0; i < n; i++)
for (int j = 1; j <= i; j++)
sum = sum + 1; // n * (n + 1) / 2
(Please note that there is no 2 in the numerator on that last comment, but there is in the function below.)
Then my notes say that f(x) = 2n(n + 1) / 2 + 1 = O(n^2)
I understand that because there are two for loops, that whatever f(x) is, it will be = O(n^2), but why is the time estimate what it is? How does the j<= i give you n*(n+1)? What about the 2 in the denominator?
Upvotes: 3
Views: 88
Reputation: 373082
Think about, across the entire execution of this code, how many times the inner loop will run. Notice that
This means that the total number of times the innermost loop runs is given by
0 + 1 + 2 + 3 + 4 + ... + (n - 1)
This is a famous summation and it solves to
0 + 1 + 2 + 3 + 4 + ... + (n - 1) = n(n - 1) / 2
This is the n - 1st triangular number and it's worth committing this to memory.
The number given - n(n + 1) / 2 - seems to be incorrect, but it's pretty close to the true number. I think they assumed the loop would run 1 + 2 + 3 + ... + n times rather than 0 + 1 + 2 + ... + n - 1 times.
From this it's a bit easier to see where the O(n2) term comes from. Notice that n(n - 1) / 2 = n2 / 2 - n / 2, so in big-O land where we drop constants and low-order terms we're left with n2.
Upvotes: 3