Reputation: 339
I want to implement a function which will return cartesian product of set, repeated given number. For example
input: {a, b}, 2
output:
aa
ab
bb
ba
input: {a, b}, 3
aaa
aab
aba
baa
bab
bba
bbb
However the only way I can implement it is firstly doing cartesion product for 2 sets("ab", "ab), then from the output of the set, add the same set. Here is pseudo-code:
function product(A, B):
result = []
for i in A:
for j in B:
result.append([i,j])
return result
function product1(chars, count):
result = product(chars, chars)
for i in range(2, count):
result = product(result, chars)
return result
What I want is to start computing directly the last set, without computing all of the sets before it. Is this possible, also a solution which will give me similar result, but it isn't cartesian product is acceptable. I don't have problem reading most of the general purpose programming languages, so if you need to post code you can do it in any language you fell comfortable with.
Upvotes: 1
Views: 415
Reputation: 28302
Here's a recursive algorithm that builds S^n without building S^(n-1) "first". Imagine an infinite k-ary tree where |S| = k. Label with the elements of S each of the edges connecting any parent to its k children. An element of S^m can be thought of as any path of length m from the root. The set S^m, in that way of thinking, is the set of all such paths. Now the problem of finding S^n is a problem of enumerating all paths of length n - and we can name a path by considering the sequence of edge labels from beginning to end. We want to directly generate S^n without first enumerating all of S^(n-1), so a depth-first search modified to find all nodes at depth n seems appropriate. This is essentially how the below algorithm works:
// collection to hold generated output
members = []
// recursive function to explore product space
Products(set[1...n], length, current[1...m])
// if the product we're working on is of the
// desired length then record it and return
if m = length then
members.append(current)
return
// otherwise we add each possible value to the end
// and generate all products of the desired length
// with the new vector as a prefix
for i = 1 to n do
current.addLast(set[i])
Products(set, length, current)
currents.removeLast()
// reset the result collection and request the set be generated
members = []
Products([a, b], 3, [])
Now, a breadth-first approach is no less efficient than a depth-first one, and if you think about it would be no different from exactly what you're already doing. Indeed, and approach that generates S^n must necessarily generate S^(n-1) at least once, since that can be found in a solution to S^n.
Upvotes: 2