Reputation: 363
I am trying to find the most efficient way to check whether the given string is palindrome or not.
Firstly, I tried brute force which has running time of the order O(N). Then I optimized the code a little bit by making only n/2 comparisons instead of n.
Here is the code:
def palindrome(a):
length=len(a)
iterator=0
while iterator <= length/2:
if a[iterator]==a[length-iterator-1]:
iterator+=1
else:
return False
return True
It takes half time when compared to brute force but it is still order O(N).
Meanwhile, I also thought of a solution which uses slice operator.
Here is the code:
def palindrome_py(a):
return a==a[::-1]
Then I did running time analysis of both. Here is the result: Running time
Length of string used is 50
Length multiplier indicates length of new string(50*multiplier)
Running time for 100000 iterations
For palindrome For palindrome_py Length Multiplier
0.6559998989 0.5309998989 1
1.2970001698 0.5939998627 2
3.5149998665 0.7820000648 3
13.4249999523 1.5310001373 4
65.5319998264 5.2660000324 5
The code I used can be accessed here: Running Time Table Generator
Now, I want to know why there is difference between running time of slice operator(palindrome_py) and the palindrome function.Why I am getting this type of running time?
Why is the slice operator so efficient as compared to the palindrome function, what is happening behind the scenes?
My observations-: running time is proportional to multiplier ie. running time when multiplier is 2 can be obtained by multiplying running time of case (n-1) ie. 1st in this case by multiplier (n) ie.2
Generalizing, we get Running Time(n)=Running Time(n-1)* Multiplier
Upvotes: 3
Views: 239
Reputation: 10513
Your slicing-based solution is still O(n), the constant got smaller (that's your multiplier). It's faster, because less stuff is done in Python and more stuff is done in C. The bytecode shows it all.
In [1]: import dis
In [2]: %paste
def palindrome(a):
length=len(a)
iterator=0
while iterator <= length/2:
if a[iterator]==a[length-iterator-1]:
iterator+=1
else:
return False
return True
## -- End pasted text --
In [3]: dis.dis(palindrome)
2 0 LOAD_GLOBAL 0 (len)
3 LOAD_FAST 0 (a)
6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
9 STORE_FAST 1 (length)
3 12 LOAD_CONST 1 (0)
15 STORE_FAST 2 (iterator)
4 18 SETUP_LOOP 65 (to 86)
>> 21 LOAD_FAST 2 (iterator)
24 LOAD_FAST 1 (length)
27 LOAD_CONST 2 (2)
30 BINARY_TRUE_DIVIDE
31 COMPARE_OP 1 (<=)
34 POP_JUMP_IF_FALSE 85
5 37 LOAD_FAST 0 (a)
40 LOAD_FAST 2 (iterator)
43 BINARY_SUBSCR
44 LOAD_FAST 0 (a)
47 LOAD_FAST 1 (length)
50 LOAD_FAST 2 (iterator)
53 BINARY_SUBTRACT
54 LOAD_CONST 3 (1)
57 BINARY_SUBTRACT
58 BINARY_SUBSCR
59 COMPARE_OP 2 (==)
62 POP_JUMP_IF_FALSE 78
6 65 LOAD_FAST 2 (iterator)
68 LOAD_CONST 3 (1)
71 INPLACE_ADD
72 STORE_FAST 2 (iterator)
75 JUMP_ABSOLUTE 21
8 >> 78 LOAD_CONST 4 (False)
81 RETURN_VALUE
82 JUMP_ABSOLUTE 21
>> 85 POP_BLOCK
10 >> 86 LOAD_CONST 5 (True)
89 RETURN_VALUE
There is a hell lot of Python virtual-machine level instructions, that are basically function calls, which are very expensive in Python.
Now, what's with the second function.
In [4]: %paste
def palindrome_py(a):
return a==a[::-1]
## -- End pasted text --
In [5]: dis.dis(palindrome_py)
2 0 LOAD_FAST 0 (a)
3 LOAD_FAST 0 (a)
6 LOAD_CONST 0 (None)
9 LOAD_CONST 0 (None)
12 LOAD_CONST 2 (-1)
15 BUILD_SLICE 3
18 BINARY_SUBSCR
19 COMPARE_OP 2 (==)
22 RETURN_VALUE
No Python iteration (jumpers) involved here and you only get 3 calls (these instructions call methods): BUILD_SLICE
, BINARY_SUBSCR
, COMPARE_OP
, all done in C, because str
is a built-in type with all methods written C. To be fair, we've seen the same instructions in the first function (along with a lot more other instructions), but there they are repeated for each character, multiplying the method-call overhead by n. Here you only pay the Python's function call overhead once, the rest is done in C.
The bottomline. You shouldn't do low-level stuff in Python manually, because it will run slower than a high-level counterpart (unless you have an asymptotically faster alternative that literally requires low-level magic). Python, unlike many other languages, most of the time encourages you to use abstractions and rewards you with higher performance.
Upvotes: 4