Reputation: 618
I need some helps structure a data. So I have the following DataFrame (called df):
I want to group my dataframe based on Mean_CArea, Mean_CPressure, and Mean_Force. However, I got the following result:
As you may see the column names are 0,1,2 not NATIVE_RH, ANATOMICAL_RH, and NON_ANATOMICAL_RH. Is there a way to get the right column names from the original dataframe?
Here is my code so far:
def function(self, df):
d = dict()
for head in df.columns.tolist():
RH, j_mechanics = head
if j_mechanics not in d:
d[j_mechanics] = df[head]
else:
d[j_mechanics] = pd.concat([d[j_mechanics],df[head]], axis=1, ignore_index=True)
for df_name, df in sorted(d.items()):
print(df_name)
print(df.head())
Big thanks in advance!
Upvotes: 2
Views: 376
Reputation: 294546
You want to use xs
df.xs('Mean_CArea', axis=1, level=1)
and
df.xs('Mean_CPressure', axis=1, level=1)
and
df.xs('Mean_Force', axis=1, level=1)
Upvotes: 1
Reputation: 863741
IIUC you can use swaplevel
with groupby
by columns (axis=1
) and by first level (level=0
):
df = pd.DataFrame({('B', 'a'): {0: 4, 1: 10}, ('B', 'b'): {0: 5, 1: 11}, ('B', 'c'): {0: 6, 1: 12}, ('A', 'a'): {0: 1, 1: 7}, ('A', 'c'): {0: 3, 1: 9}, ('A', 'b'): {0: 2, 1: 8}})
print (df)
A B
a b c a b c
0 1 2 3 4 5 6
1 7 8 9 10 11 12
df.columns = df.columns.swaplevel(0,1)
for i, g in df.groupby(level=0, axis=1):
print (g)
a
A B
0 1 4
1 7 10
b
A B
0 2 5
1 8 11
c
A B
0 3 6
1 9 12
Upvotes: 2