Reputation: 1737
df:
name group S1 S2 S3
A mn 1 2 8
B mn 4 3 5
C kl 5 8 2
D kl 6 5 5
E fh 7 1 3
output:
std (S1,S2,S3)
3.78
1
3
0.57
3.05
This is working for getting std for a column:
numpy.std(df['A'])
I want to do the same for rows
Upvotes: 8
Views: 39131
Reputation: 862511
You can use DataFrame.std
, which omit non numeric columns:
print (df.std())
S1 2.302173
S2 2.774887
S3 2.302173
dtype: float64
If need std
by columns:
print (df.std(axis=1))
0 3.785939
1 1.000000
2 3.000000
3 0.577350
4 3.055050
dtype: float64
If need select only some numeric columns, use subset:
print (df[['S1','S2']].std())
S1 2.302173
S2 2.774887
dtype: float64
There is different with numpy.std
by default parameter ddof
(Delta Degrees of Freedom):
ddof=1
ddof=0
So there are different outputs:
#ddof=1
print (df.std(axis=1))
0 3.785939
1 1.000000
2 3.000000
3 0.577350
4 3.055050
dtype: float64
#ddof=0
print (np.std(df, axis=1))
0 3.091206
1 0.816497
2 2.449490
3 0.471405
4 2.494438
dtype: float64
But you can change it very easy:
#same output as pandas function
print (np.std(df, ddof=1, axis=1))
0 3.785939
1 1.000000
2 3.000000
3 0.577350
4 3.055050
dtype: float64
#same output as numpy function
print (df.std(ddof=0, axis=1))
0 3.091206
1 0.816497
2 2.449490
3 0.471405
4 2.494438
dtype: float64
Upvotes: 20
Reputation: 7423
When you can not do on rows whatever you can do on column you may use "transpose"
np.std( df.transpose()['S1'] )
Upvotes: 1