Reputation: 121
I have an integral that MATLAB was unable to obtain an answer to my question. I have two questions.
Is there a way to calculate the integral in MATLAB?
Is this possible to use other software like Mathematica or Maple in calculation of this integral?
b=5;
t0=6;
syms s t
Z=8/5*(4/5+1/5*(25*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)^2*exp(-5505815247359351/72057594037927936*s)^2-20*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)+16)^(1/2))^2*(((911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)+4/5)^2-(911860908983391/2251799813685248*s-911860908983391/2251799813685248)^2*exp(-5505815247359351/72057594037927936*s)^2+4/5*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)-16/25)^(1/2)/((911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)+1/5*(25*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)^2*exp(-5505815247359351/72057594037927936*s)^2-20*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)+16)^(1/2))^2
V=int(Z,s,t0-b,t)
Upvotes: 0
Views: 86
Reputation: 8655
Assuming I have placed the exponential function brackets correctly, Mma 10.4 can only find numerically approximate answers, e.g.
z = 8/5*(4/5 +
1/5*(25*(911860908983391/2251799813685248*s -
911860908983391/2251799813685248)^2*
Exp[-5505815247359351/72057594037927936*s]^2 -
20*(911860908983391/2251799813685248*s -
911860908983391/2251799813685248)*
Exp[-5505815247359351/72057594037927936*s] + 16)^(1/
2))^2*(((911860908983391/2251799813685248*s -
911860908983391/2251799813685248)*
Exp[-5505815247359351/72057594037927936*s] +
4/5)^2 - (911860908983391/2251799813685248*s -
911860908983391/2251799813685248)^2*
Exp[-5505815247359351/72057594037927936*s]^2 +
4/5*(911860908983391/2251799813685248*s -
911860908983391/2251799813685248)*
Exp[-5505815247359351/72057594037927936*s] - 16/25)^(1/
2)/((911860908983391/2251799813685248*s -
911860908983391/2251799813685248)*
Exp[-5505815247359351/72057594037927936*s] +
1/5*(25*(911860908983391/2251799813685248*s -
911860908983391/2251799813685248)^2*
Exp[-5505815247359351/72057594037927936*s]^2 -
20*(911860908983391/2251799813685248*s -
911860908983391/2251799813685248)*
Exp[-5505815247359351/72057594037927936*s] + 16)^(1/2))^2;
NIntegrate[z, {s, 1, 2}]
2.67636
Upvotes: 1