Math-Data
Math-Data

Reputation: 121

A troubling integral in MATLAB

I have an integral that MATLAB was unable to obtain an answer to my question. I have two questions.

  1. Is there a way to calculate the integral in MATLAB?

  2. Is this possible to use other software like Mathematica or Maple in calculation of this integral?

b=5;
t0=6;
syms s t

Z=8/5*(4/5+1/5*(25*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)^2*exp(-5505815247359351/72057594037927936*s)^2-20*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)+16)^(1/2))^2*(((911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)+4/5)^2-(911860908983391/2251799813685248*s-911860908983391/2251799813685248)^2*exp(-5505815247359351/72057594037927936*s)^2+4/5*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)-16/25)^(1/2)/((911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)+1/5*(25*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)^2*exp(-5505815247359351/72057594037927936*s)^2-20*(911860908983391/2251799813685248*s-911860908983391/2251799813685248)*exp(-5505815247359351/72057594037927936*s)+16)^(1/2))^2

V=int(Z,s,t0-b,t)

Upvotes: 0

Views: 86

Answers (1)

Chris Degnen
Chris Degnen

Reputation: 8655

Assuming I have placed the exponential function brackets correctly, Mma 10.4 can only find numerically approximate answers, e.g.

z = 8/5*(4/5 + 
      1/5*(25*(911860908983391/2251799813685248*s - 
              911860908983391/2251799813685248)^2*
           Exp[-5505815247359351/72057594037927936*s]^2 - 
          20*(911860908983391/2251799813685248*s - 
             911860908983391/2251799813685248)*
           Exp[-5505815247359351/72057594037927936*s] + 16)^(1/
          2))^2*(((911860908983391/2251799813685248*s - 
             911860908983391/2251799813685248)*
           Exp[-5505815247359351/72057594037927936*s] + 
          4/5)^2 - (911860908983391/2251799813685248*s - 
           911860908983391/2251799813685248)^2*
        Exp[-5505815247359351/72057594037927936*s]^2 + 
       4/5*(911860908983391/2251799813685248*s - 
          911860908983391/2251799813685248)*
        Exp[-5505815247359351/72057594037927936*s] - 16/25)^(1/
       2)/((911860908983391/2251799813685248*s - 
          911860908983391/2251799813685248)*
        Exp[-5505815247359351/72057594037927936*s] + 
       1/5*(25*(911860908983391/2251799813685248*s - 
               911860908983391/2251799813685248)^2*
            Exp[-5505815247359351/72057594037927936*s]^2 - 
           20*(911860908983391/2251799813685248*s - 
              911860908983391/2251799813685248)*
            Exp[-5505815247359351/72057594037927936*s] + 16)^(1/2))^2;

NIntegrate[z, {s, 1, 2}]

2.67636

Upvotes: 1

Related Questions