Reputation: 650
Im trying to understand the delete operator in c++.
I could understand the logic behind using pointers and new operator, yet I understood that "The delete operator eliminates a dynamic variable and returns the memory that the dynamic variable occupied to the freestone." p517, Problem solving with C++ 9th edition.
which, I think doesn't align with the third cout statement. and I expected that the third cout statement to be sth similar to the first one.
int main() {
int *p1;
cout << "p1 address: " << &p1 << " and points to the address "<< p1 << " which has the value: " << *p1<< endl;
p1 = new int;
cout << "p1 address: " << &p1 << " and points to the address "<< p1 << " which has the value: " << *p1<< endl;
delete p1;
cout << "p1 address: " << &p1 << " and points to the address "<< p1 << " which has the value: " << *p1<< endl;
cout << endl;
return 0;
}
I would appreciate any explanation :))
Upvotes: 1
Views: 118
Reputation: 4283
delete
doesn't have to change the memory your pointer points to. What it actually does is implementation specific.
What delete
needs to do is to deconstruct any object at the given address and return the associated memory to the allocation pool. Some debugger might overwrite the value of a variable when freed, but for trivial types no special deconstruction needs to take place - the memory can be returned to the pool as-is. The pointer isn't changed either: after delete p
we call p
a dangling pointer that holds an address to freed memory. All access through that pointer is undefined behaviour.
Since handling raw pointers and especially dangling pointers is error prone, it's good to know the C++ smartpointers, e.g. unique_ptr
:
std::unique_ptr<int> p; // initialised to nullptr
p = std::make_unique<int>(13); // new int with value 13
p = std::make_unique<int>(37); // deleted previous int, assigned new int with value 37
// optional (when p goes out of scope its pointee is deleted automatically)
p.reset(); // deleted the int and reset p to nullptr
Upvotes: 1