Reputation: 574
Tensorflow supports dynamic length sequence by use of the parameter: 'sequence_length' while constructing the RNN layer, wherein the model does not learn the sequence after the sequence size = 'sequence_length' i.e, returns zero vector.
However, how can the cost function at https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/ops/seq2seq.py#L890 be modified to encounter the masked sequences, so that cost and perplexity are calculated only on the actual sequences rather than whole padded sequence?
def sequence_loss_by_example(logits, targets, weights, average_across_timesteps=True, softmax_loss_function=None, name=None):
if len(targets) != len(logits) or len(weights) != len(logits):
raise ValueError("Lengths of logits, weights, and targets must be the same "
"%d, %d, %d." % (len(logits), len(weights), len(targets)))
with ops.op_scope(logits + targets + weights, name,
"sequence_loss_by_example"):
log_perp_list = []
for logit, target, weight in zip(logits, targets, weights):
if softmax_loss_function is None:
# TODO(irving,ebrevdo): This reshape is needed because
# sequence_loss_by_example is called with scalars sometimes, which
# violates our general scalar strictness policy.
target = array_ops.reshape(target, [-1])
crossent = nn_ops.sparse_softmax_cross_entropy_with_logits(
logit, target)
else:
crossent = softmax_loss_function(logit, target)
log_perp_list.append(crossent * weight)
log_perps = math_ops.add_n(log_perp_list)
if average_across_timesteps:
total_size = math_ops.add_n(weights)
total_size += 1e-12 # Just to avoid division by 0 for all-0 weights.
log_perps /= total_size
return log_perps
Upvotes: 1
Views: 650
Reputation: 929
This function already supports calculating costs for dynamic sequence lengths through the use of weights. As long as you ensure the weights are 0 for the "padding targets", the cross entropy will be pushed to 0 for those steps:
log_perp_list.append(crossent * weight)
and the total size will also reflect only the non-padding steps:
total_size = math_ops.add_n(weights)
If you're padding with zeros, one way to derive the weights is as follows:
weights = tf.sign(tf.abs(model.targets))
(Note that you might need to cast this to the same type as your targets)
Upvotes: 1