Reputation: 316
This question is related to my previous one. Here is a small sample data. I have used both data.table
and data.frame
to find a faster solution.
test.dt <- data.table(strt=c(1,1,2,3,5,2), end=c(2,1,5,5,5,4), a1.2=c(1,2,3,4,5,6),
a2.3=c(2,4,6,8,10,12), a3.4=c(3,1,2,4,5,1), a4.5=c(5,1,15,10,12,10),
a5.6=c(4,8,2,1,3,9))
test.dt[,rown:=as.numeric(row.names(test.dt))]
test.df <- data.frame(strt=c(1,1,2,3,5,2), end=c(2,1,5,5,5,4), a1.2=c(1,2,3,4,5,6),
a2.3=c(2,4,6,8,10,12), a3.4=c(3,1,2,4,5,1), a4.5=c(5,1,15,10,12,10),
a5.6=c(4,8,2,1,3,9))
test.df$rown <- as.numeric(row.names(test.df))
> test.df
strt end a1.2 a2.3 a3.4 a4.5 a5.6 rown
1 1 2 1 2 3 5 4 1
2 1 1 2 4 1 1 8 2
3 2 5 3 6 2 15 2 3
4 3 5 4 8 4 10 1 4
5 5 5 5 10 5 12 3 5
6 2 4 6 12 1 10 9 6
I want to use the start and end column values to determine the range of columns to subset (columns from a1.2 to a5.6) and obtain the mean. For example, in the first row, since strt=1 and end=2, I need to get the mean of a1.2 and a2.3; in the third row, I need to get the mean of a2.3, a3.4, a4.5, and a5.6
The output should be a vector like this
> k
1 2 3 4 5 6
1.500000 2.000000 6.250000 5.000000 3.000000 7.666667
Here, is what I tried:
Solution 1: This uses the data.table
and applies a function over it.
func.dt <- function(rown, x, y) {
tmp <- paste0("a", x, "." , x+1)
tmp1 <- paste0("a", y, "." , y+1)
rowMeans(test.dt[rown,get(tmp):get(tmp1), with=FALSE])
}
k <- test.dt[, func.dt(rown, strt, end), by=.(rown)]
Solution 2: This uses the data.frame
and applies a function over it.
func.df <- function(rown, x, y) {
rowMeans(test.df[rown,(x+2):(y+2), drop=FALSE])
}
k1 <- mapply(func.df, test.df$rown, test.df$strt, test.df$end)
Solution 3: This uses the data.frame
and loops through it.
test.ave <- rep(NA, length(test1$strt))
for (i in 1 : length(test.df$strt)) {
test.ave[i] <- rowMeans(test.df[i, as.numeric(test.df[i,1]+2):as.numeric(test.df[i,2]+2), drop=FALSE])
}
Benchmarking shows that Solution 2 is the fastest.
test replications elapsed relative user.self sys.self user.child sys.child
1 sol1 100 0.67 4.786 0.67 0 NA NA
2 sol2 100 0.14 1.000 0.14 0 NA NA
3 sol3 100 0.15 1.071 0.16 0 NA NA
But, this is not good enough for me. Given the size of my data, these functions would need to run for a few days before I get the output. I am sure that I am not fully utilizing the power of data.table
and I also know that my functions are crappy (they refer to the dataset in the global environment without passing it). Unfortunately, I am out of my depth and do not know how to fix these issues and make my functions fast. I would greatly appreciate any suggestions that help in improving my function(s) or point to alternate solutions.
Upvotes: 2
Views: 377
Reputation: 4513
Unless you can think of a way to do this with a clever subsetting approach, I think you've reached R's speed barrier. You'll want to use a low-level language like C++ for this problem. Fortunately, the Rcpp
package makes interfacing with C++
in R
simple. Disclaimer: I've never written a single line of C++ code in my life. This code may be very inefficient.
library(Rcpp)
cppFunction('NumericVector MYrcpp(NumericMatrix x) {
int nrow = x.nrow(), ncol = x.ncol();
NumericVector out(nrow);
for (int i = 0; i < nrow; i++) {
double avg = 0;
int start = x(i,0);
int end = x(i,1);
int N = end - start + 1;
while(start<=end){
avg += x(i, start + 1);
start = start + 1;
}
out[i] = avg/N;
}
return out;
}')
For this code I'm going to pass the data.frame
as a matrix
(i.e. testM <- as.matrix(test.df)
)
Let's see if it works...
MYrcpp(testM)
[1] 1.500000 2.000000 6.250000 5.000000 3.000000 7.666667
How fast is it?
Unit: microseconds
expr min lq mean median uq max neval
f2() 1543.099 1632.3025 2039.7350 1843.458 2246.951 4735.851 100
f3() 1859.832 1993.0265 2642.8874 2168.012 2493.788 19619.882 100
f4() 281.541 315.2680 364.2197 345.328 375.877 1089.994 100
MYrcpp(testM) 3.422 10.0205 16.7708 19.552 21.507 56.700 100
Where f2()
, f3()
and f4()
are defined as
f2 <- function(){
func.df <- function(rown, x, y) {
rowMeans(test.df[rown,(x+2):(y+2), drop=FALSE])
}
k1 <- mapply(func.df, test.df$rown, test.df$strt, test.df$end)
}
f3 <- function(){
test.ave <- rep(NA, length(test.df$strt))
for (i in 1 : length(test.df$strt)) {
test.ave[i] <- rowMeans(test.df[i,as.numeric(test.df[i,1]+2):as.numeric(test.df[i,2]+2), drop=FALSE])
}
}
f4 <- function(){
lapply(
apply(test.df,1, function(x){
x[(x[1]+2):(x[2]+2)]}),
mean)
}
That's roughly a 20x increase over the fastest.
Note, to implement the above code you'll need a C
complier which R
can access. For windows look into Rtools
. For more on Rcpp
read this
Now let's see how it scales.
N = 5e3
test.df <- data.frame(strt = 1,
end = sample(5, N, replace = TRUE),
a1.2 = sample(3, N, replace = TRUE),
a2.3 = sample(7, N, replace = TRUE),
a3.4 = sample(14, N, replace = TRUE),
a4.5 = sample(8, N, replace = TRUE),
a5.6 = sample(30, N, replace = TRUE))
test.df$rown <- as.numeric(row.names(test.df))
test.dt <- as.data.table(test.df)
microbenchmark(f4(), MYrcpp(testM))
Unit: microseconds
expr min lq mean median uq max neval
f4() 88647.256 108314.549 125451.4045 120736.073 133487.5295 259502.49 100
MYrcpp(testM) 196.003 216.533 242.6732 235.107 261.0125 499.54 100
With 5e3
rows MYrcpp
is now 550x faster. This partially due to the fact that f4()
is not going to scale well as Richard discusses in the comment. The f4()
is essentially invoking a nested for loop by calling an apply
within a lapply
. Interestingly, the C++
code is also invoking a nested loop by utilizing a while loop inside a for loop. The speed disparity is due in large part to the fact that the C++
code is already complied and does not need to be interrupted into something the machine can understand at run time.
I'm not sure how big your data set is, but when I run MYrcpp
on a data.frame
with 1e7
rows, which is the largest data.frame
I could allocate on my crummy laptop, it ran in 500 milliseconds.
MYr <- function(x){
nrow <- nrow(x)
ncol <- ncol(x)
out <- matrix(NA, nrow = 1, ncol = nrow)
for(i in 1:nrow){
avg <- 0
start <- x[i,1]
end <- x[i,2]
N <- end - start + 1
while(start<=end){
avg <- avg + x[i, start + 2]
start = start + 1
}
out[i] <- avg/N
}
out
}
Both MYrcpp
and MYr
are similar in many ways. Let me discuss a couple of the differences
MYrcpp
is different from the MYr
. In words the first line of MYrcpp
, NumericVector MYrcpp(NumericMatrix x)
, means that we are defining a function whose name is MYrcpp
which returns an output of class NumericVector
and takes an input x
of class NumericMatrix
.int nrow = x.row()
is a variable whose name is nrow
whose class is int
(i.e. integer) and is assigned to be x.nrow()
i.e. the number of rows of x. (IGNORE if you're overwhelmed, nrow()
is a method for instances of class `NumericVector. Like in Python you call a method by attaching it to the instance. The R equivalent is S3 and S4 methods)x(0,1)
in C++ is equivalent to x[1,2]
in R++
is an operator that means increment by 1, i.e. j++
is the same as j + 1
. +=
is an operator that means add to together and assign, i.e. a += b
is the same as a = a + b
Upvotes: 3
Reputation: 176648
I was curious how fast I could make this without resorting to writing custom C or C++ code. The best I could come up with is below. Note that using mean.default
will provide greater precision, since it does a second pass over the data for error correction.
f_jmu <- compiler::cmpfun({function(m) {
# remove start/end columns from 'm' matrix
ma <- m[,-(1:2)]
# column index for each row in 'ma' matrix
cm <- col(ma)
# logical index of whether we need the column for each row
i <- cm >= m[,1L] & cm <= m[,2L]
# multiply the input matrix by the index matrix and sum it
# divide by the sum of the index matrix to get the mean
rowSums(i*ma) / rowSums(i)
}})
The Rcpp function is still faster (not surprisingly), but the function above gets respectably close. Here's an example on 50 million observations on my laptop with an i7-4600U and 12GB of RAM.
set.seed(21)
N <- 5e7
test.df <- data.frame(strt = 1L,
end = sample(5, N, replace = TRUE),
a1.2 = sample(3, N, replace = TRUE),
a2.3 = sample(7, N, replace = TRUE),
a3.4 = sample(14, N, replace = TRUE),
a4.5 = sample(8, N, replace = TRUE),
a5.6 = sample(30, N, replace = TRUE))
test.df$strt <- pmax(1L, test.df$end - sample(3, N, replace = TRUE) + 1L)
test.m <- as.matrix(test.df)
Also note that I take care to ensure that test.m
is an integer matrix. That helps reduce the memory footprint, which can help make things faster.
R> system.time(st1 <- MYrcpp(test.m))
user system elapsed
0.900 0.216 1.112
R> system.time(st2 <- f_jmu(test.m))
user system elapsed
6.804 0.756 7.560
R> identical(st1, st2)
[1] TRUE
Upvotes: 3
Reputation: 2797
My solution is the first one in the benchmark
library(microbenchmark)
microbenchmark(
lapply(
apply(test.df,1, function(x){
x[(x[1]+2):(x[2]+2)]}),
mean),
test.dt[, func.dt(rown, strt, end), by=.(rown)]
)
min lq mean median uq max neval
138.654 175.7355 254.6245 201.074 244.810 3702.443 100
4243.641 4747.5195 5576.3399 5252.567 6247.201 8520.286 100
It seems to be 25 times faster, but this is a small dataset. I am sure there is a better way to do this than what I have done.
Upvotes: 2