CentAu
CentAu

Reputation: 11160

pandas, multiply all the numeric values in the data frame by a constant

How to multiply all the numeric values in the data frame by a constant without having to specify column names explicitly? Example:

In [13]: df = pd.DataFrame({'col1': ['A','B','C'], 'col2':[1,2,3], 'col3': [30, 10,20]})

In [14]: df
Out[14]: 
  col1  col2  col3
0    A     1    30
1    B     2    10
2    C     3    20

I tried df.multiply but it affects the string values as well by concatenating them several times.

In [15]: df.multiply(3)
Out[15]: 
  col1  col2  col3
0  AAA     3    90
1  BBB     6    30
2  CCC     9    60

Is there a way to preserve the string values intact while multiplying only the numeric values by a constant?

Upvotes: 25

Views: 50463

Answers (5)

R.W.
R.W.

Reputation: 99

A simple solution using assign() and select_dtypes():

df.assign(**df.select_dtypes('number')*3)

Upvotes: 0

MaxU - stand with Ukraine
MaxU - stand with Ukraine

Reputation: 210852

you can use select_dtypes() including number dtype or excluding all columns of object and datetime64 dtypes:

Demo:

In [162]: df
Out[162]:
  col1  col2  col3       date
0    A     1    30 2016-01-01
1    B     2    10 2016-01-02
2    C     3    20 2016-01-03

In [163]: df.dtypes
Out[163]:
col1            object
col2             int64
col3             int64
date    datetime64[ns]
dtype: object

In [164]: df.select_dtypes(exclude=['object', 'datetime']) * 3
Out[164]:
   col2  col3
0     3    90
1     6    30
2     9    60

or a much better solution (c) ayhan:

df[df.select_dtypes(include=['number']).columns] *= 3

From docs:

To select all numeric types use the numpy dtype numpy.number

Upvotes: 34

Divakar
Divakar

Reputation: 221574

One way would be to get the dtypes, match them against object and datetime dtypes and exclude them with a mask, like so -

df.ix[:,~np.in1d(df.dtypes,['object','datetime'])] *= 3

Sample run -

In [273]: df
Out[273]: 
  col1  col2  col3
0    A     1    30
1    B     2    10
2    C     3    20

In [274]: df.ix[:,~np.in1d(df.dtypes,['object','datetime'])] *= 3

In [275]: df
Out[275]: 
  col1  col2  col3
0    A     3    90
1    B     6    30
2    C     9    60

Upvotes: 4

piRSquared
piRSquared

Reputation: 294318

This should work even over mixed types within columns but is likely slow over large dataframes.

def mul(x, y):
    try:
        return pd.to_numeric(x) * y
    except:
        return x

df.applymap(lambda x: mul(x, 3))

Upvotes: 3

Jossie Calderon
Jossie Calderon

Reputation: 1425

The other answer specifies how to multiply only numeric columns. Here's how to update it:

df = pd.DataFrame({'col1': ['A','B','C'], 'col2':[1,2,3], 'col3': [30, 10,20]})

s = df.select_dtypes(include=[np.number])*3

df[s.columns] = s

print (df)

  col1  col2  col3
0    A     3    90
1    B     6    30
2    C     9    60

Upvotes: 7

Related Questions