Reputation: 5195
I have a DataFrame called 'mydata', and if I do
len(mydata.loc['2015-9-2'])
It counts the number of rows in mydata that have that date, and returns a number like
1067
I have another DataFrame called 'yourdata' which looks something like
timestamp
51 2015-06-22
52 2015-06-23
53 2015-06-24
54 2015-06-25
43 2015-07-13
Now I want use each date in yourdata so instead of typing in each date
len(mydata.loc['2015-9-2'])
I can iterate through 'yourdata' using them like
len(mydata.loc[yourdata['timestamp']])
and produce a new DataFrame with the results or just add a new column to yourdata with the result for each date, but I'm lost as how to do this?
The following does not work
yourdata['result'] = len(mydata.loc[yourdata['timestamp']])
neither does this
yourdata['result'] = len(mydata.loc[yourdata.iloc[:,-3]])
this does work
yourdata['result'] = len(mydata.loc['2015-9-2'])
buts that no good as I want to use the date in each row not some fixed date.
Edit: first few rows of mydata
timestamp BPM
0 2015-08-30 16:48:00 65
1 2015-08-30 16:48:10 65
2 2015-08-30 16:48:15 66
3 2015-08-30 16:48:20 67
4 2015-08-30 16:48:30 70
Upvotes: 0
Views: 101
Reputation: 13923
import numpy as np
import pandas as pd
mydata = pd.DataFrame({'timestamp': ['2015-06-22 16:48:00']*3 +
['2015-06-23 16:48:00']*2 +
['2015-06-24 16:48:00'] +
['2015-06-25 16:48:00']*4 +
['2015-07-13 16:48:00',
'2015-08-13 16:48:00'],
'BPM': [65]*8 + [70]*4})
mydata['timestamp'] = pd.to_datetime(mydata['timestamp'])
print(mydata)
# BPM timestamp
# 0 65 2015-06-22 16:48:00
# 1 65 2015-06-22 16:48:00
# 2 65 2015-06-22 16:48:00
# 3 65 2015-06-23 16:48:00
# 4 65 2015-06-23 16:48:00
# 5 65 2015-06-24 16:48:00
# 6 65 2015-06-25 16:48:00
# 7 65 2015-06-25 16:48:00
# 8 70 2015-06-25 16:48:00
# 9 70 2015-06-25 16:48:00
# 10 70 2015-07-13 16:48:00
# 11 70 2015-08-13 16:48:00
yourdata = pd.Series(['2015-06-22', '2015-06-23', '2015-06-24',
'2015-06-25', '2015-07-13'], name='timestamp')
yourdata = pd.to_datetime(yourdata).to_frame()
print(yourdata)
# 0 2015-06-22
# 1 2015-06-23
# 2 2015-06-24
# 3 2015-06-25
# 4 2015-07-13
result = (mydata.set_index('timestamp').resample('D')
.size().loc[yourdata['timestamp']]
.reset_index())
result.columns = ['timestamp', 'result']
print(result)
# timestamp result
# 0 2015-06-22 3
# 1 2015-06-23 2
# 2 2015-06-24 1
# 3 2015-06-25 4
# 4 2015-07-13 1
Upvotes: 1
Reputation: 863741
I think you need value_counts
, but first convert to dates by dt.date
, convert to to_datetime
and last use join
:
print (yourdata.join(pd.to_datetime(mydata.timestamp.dt.date)
.value_counts()
.rename('len'), on='timestamp'))
Sample:
print (mydata)
timestamp BPM
0 2015-06-23 16:48:00 65
1 2015-06-23 16:48:10 65
2 2015-06-23 16:48:15 66
3 2015-06-23 16:48:20 67
4 2015-06-22 16:48:30 70
print (yourdata)
timestamp
51 2015-06-22
52 2015-06-23
53 2015-06-24
54 2015-06-25
43 2015-07-13
#if dtype not datetime
mydata['timestamp'] = pd.to_datetime(mydata['timestamp'])
yourdata['timestamp'] = pd.to_datetime(yourdata['timestamp'])
print (yourdata.join(pd.to_datetime(mydata.timestamp.dt.date)
.value_counts()
.rename('len'), on='timestamp'))
timestamp len
51 2015-06-22 1.0
52 2015-06-23 4.0
53 2015-06-24 NaN
54 2015-06-25 NaN
43 2015-07-13 NaN
Upvotes: 0